Softw Syst Model (2016) 15:473-496
DOI 10.1007/s10270-014-0413-5

@ CrossMark

REGULAR PAPER

View-based model-driven software development with ModelJoin

Erik Burger - Jorg Henss - Martin Kiister -
Steffen Kruse .- Lucia Happe

Received: 27 June 2013 / Revised: 28 March 2014 / Accepted: 2 April 2014 / Published online: 9 May 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract Fragmentation of information across instances
of different metamodels poses a significant problem for soft-
ware developers and leads to a major increase in effort
of transformation development. Moreover, compositions of
metamodels tend to be incomplete, imprecise, and erroneous,
making it impossible to present it to users or use it directly as
input for applications. Customized views satisfy information
needs by focusing on a particular concern, and filtering out
information that is not relevant to this concern. For a broad
establishment of view-based approaches, an automated solu-
tion to deal with separate metamodels and the high com-
plexity of model transformations is necessary. In this paper,
we present the ModelJoin approach for the rapid creation
of views. Using a human-readable textual DSL, develop-
ers can define custom views declaratively without having to
write model transformations or define a bridging metamodel.

Communicated by Prof. Colin Atkinson.

E. Burger (<) - J. Henss - L. Happe

Institute for Program Structures and Data Organization (IPD),
Karlsruhe Institute of Technology, Am Fasanengarten 5,

76131 Karlsruhe, Germany

e-mail: burger @kit.edu

J. Henss
e-mail: henss @kit.edu

L. Happe
e-mail: lucia.happe @kit.edu

M. Kiister

FZI Forschungszentrum Informatik, Haid-und-Neu-Strae 10-14,
76131 Karlsruhe, Germany

e-mail: kuester@fzi.de

S. Kruse

OFFIS—Institute for Information Technology, Escherweg 2,
26121 Oldenburg, Germany

e-mail: steffen.kruse @offis.de

Instead, a metamodel generator and higher-order transforma-
tions create annotated target metamodels and the appropriate
transformations on-the-fly. The resulting views, which are
based on these metamodels, contain joined instances and can
effectively express concerns unforseen during metamodel
design. We have applied the ModelJoin approach and val-
idated the textual DSL in a case study using the Palladio
Component Model.

Keywords View-based modeling - Model-driven software
development - Model transformation - Model-based query
language

1 Introduction

While in early years of software development, roughly 90 %
of a software was concerned with providing the primary
services, today it is only about 40%; the rest deals with
platform-specific technologies, GUI, interoperability, secu-
rity, and other dependability concerns [1]. In model-driven
software development, processes suffer from two problems:

First, fragmentation of information across instances of dif-
ferent metamodels, which are used to address the specific
viewpoints of the underlying domain [2]. This can lead to
redundancies and inconsistencies if models share a seman-
tic overlap and describe the same software system (e.g., an
architecture model and an object-oriented class diagram).
Large systems are often not represented by instances of a
single metamodel, since existing metamodels and domain
standards have to be respected. For example, the analysis of
performance properties requires the usage of a performance-
specific metamodel, while the design of the system is mod-
eled in a general-purpose modeling language such as UML.

Second, the individual models are usually too complex to
be grasped by a single person. Navigating large models is a

@ Springer

www.manaraa.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0413-5&domain=pdf

474

E. Burger et al.

time-consuming and frustrating task [1]. Although detailed
models of the software under development form the basis for
facilitating more reasonable software project planning, the
complexity of such models can lead to a poor effort distrib-
ution which is among the major causes of rework [3].

View-based approaches tackle these problems by support-
ing seamless access to autonomous, heterogeneous infor-
mation sources eventually targeting a specific concern.
View-centric modeling techniques [4,5] address this task by
treating views as first-class entities of the modeling process:
Information is stored in a central model, while users operate
on custom partial views that represent only relevant informa-
tion, and thus reduce the complexity for developers. From a
model-driven perspective, a view is again a special model that
conforms to a view type, i.e., a metamodel. To create a view, a
software developer has to choose a view type or define a new
one and implement model transformations from the central
model to the view.

Although this concept theoretically solves the prob-
lem of fragmentation and complexity, existing view-based
approaches fail to define a metamodel for the central model,
since such a “super-metamodel” would have to cover all
the possible viewpoints of software development. Further-
more, the definition of a view type requires the creation of a
new metamodel and model transformations, which is a time-
consuming and error-prone process.

We therefore propose the ModelJoin approach for view-
based model-driven software development. ModelJoin imple-
ments the concept of dynamically created, so-called flexible
view types [6], which can contain information from several
distinct metamodels. ModelJoin features a human-readable
domain-specific language (DSL) with a concrete textual syn-
tax for the declarative description of customized views. With
ModelJoin, developers can create new view types and views
by writing a query in an SQL-like concrete textual syntax.
The new metamodel for the view type and the transforma-
tions are generated automatically and on-the-fly by Mod-
elJoin. This reduces the complexity of view definition and
makes it possible to create customized views rapidly, since a
ModelJoin query does not only define the view type, but also
the actual set of elements which are contained in the resulting
view.

The ModelJoin DSL is a specialized language for the def-
inition of views over heterogeneous models. Existing query
languages for metamodels serve a similar purpose, but are
limited to one metamodel [7-9], require adaptations to the
underlying metamodels [10] or the a priori definition of the
target metamodel [11]. ModelJoin addresses these short-
comings while at the same time reducing the complexity
for the creation of user-specific views. In contrast to all-
purpose model transformation languages [12,13], it reduces
the expressiveness for the sake of clarity and brevity and com-
bines metamodel and transformation definition. Although

@ Springer

related to model composition [14,15] and model merging
[16-18], our approach is not based on automatic matching
of structural similarities, but relies on the explicit declarative
definition of semantic overlaps in the ModelJoin DSL by the
developer.

With ModelJoin, existing metamodels are combined in
a non-intrusive way, so developers can create views which
aggregate information from loosely coupled models without
having to modify the metamodels.

The contribution of this paper is a method for the spec-
ification of view types and views on heterogeneous mod-
els, including a formal definition of the ModelJoin DSL,
and a prototypical implementation based on model-driven
technologies such as metamodel generation and higher-order
transformations. The approach is evaluated with a case study
in the field of component-based software development, using
the Palladio Component Model [19].

The remainder of this paper is structured as follows: Sect. 2
contains the foundations of the approach. In Sect. 3, we
present the view-based development approach, followed by
a scenario (Sect. 4), which will serve as a running example
throughout the paper. Section 5 contains the formal definition
of the ModelJoin DSL. The prototypical implementation is
presented in Sect. 6, followed by a case study based on the
running example (Sect. 7). The final sections contain related
work (Sect. 8) and the conclusion with an outlook on future
work in Sect. 9.

2 Foundations
2.1 View-based model-driven software development

The roots of view-based software development go back even
before the era of object-oriented languages [20]. The first
object-oriented methods like OMT [21] and Fusion [22]
already featured several diagram types for structural, behav-
ioral, and operational viewpoints. This was further extended
in approaches like the 4+1 viewpoints by Kruchten [23], lead-
ing to today’s standards like RUP [24] and UML [25], which
contain several diagram types for the description of software
architectures.

With the Orthographic Software Modeling (OSM) [5]
approach, Atkinson et al. aim to establish views as first-class
entities of a model-driven software engineering process. In
their envisioned view-centric development process, all infor-
mation about a system is represented in a single underlying
model (SUM); thus, the SUM even transcends the function
of being a model, but becomes the system itself. All access
to the SUM is organized in user-specific, automatically gen-
erated views. Even executable source code is treated as only
a special textual view. The views are synchronized via the
central SUM and are not synchronized directly with each
other. The approach has been implemented prototypically for

www.manaraa.com

Software development with ModelJoin

475

component-based systems in KobrA [26], which is based on
UML, OCL, and the Atlas Transformation Language (ATL)
[13]. The OSM approach is currently being developed fur-
ther in the VITRUVIUS approach [6,27], which is based on a
modular single underlying model that includes legacy meta-
models and views. To retrieve information from the mod-
ular SUM, elements from multiple sub-models have to be
integrated in specialized views. In the current state, these
view types and transformations for the synchronization of
the models and the views have to be created and maintained
manually.

The terms view and viewpoint, on which the terminol-
ogy in this paper is based, have been defined in the IEEE
1471/1SO 42010 standard [28,29]. It contains a definition
for the terms architecture view and architecture viewpoint:
The term architecture view is defined as a “work product
expressing the architecture of a system from the perspec-
tive of specific system concerns,” and architecture viewpoint
is defined as a “work product establishing the conventions
for the construction, interpretation, and use of architecture
views to frame specific system concerns.” These conven-
tions may include “languages, notations, model kinds, design
rules, and/or modeling methods, analysis techniques, and
other operations on views.”

Furthermore, the ISO 42010 standard differentiates
between synthetic and projective approaches:

In the synthetic approach, an architect constructs views
of the system of interest and integrates these views
within an architecture description using model cor-
respondences. In the projective approach, an archi-
tect derives each view through some routine, possibly
mechanical, procedure of extraction from an underly-
ing repository. (from [29])

ModelJoin is suited for projective approaches, where the
information about a system is represented in several mod-
els, from which the views are derived.

Model-driven software development [30] is based on mod-
els and transformations as primary artifacts. The model-
driven architecture (MDA) standard, as defined by the Object
Management Grouop (OMG) [31], uses the terms view and
viewpoint in the sense of the ISO standard and thus con-
tains the three viewpoints computation independent view-
point, platform independent viewpoint, and platform specific
viewpoint with the adjacent models CIM, PIM, and PSM. The
OMG stack of modeling standards (MOF, QVT, OCL) and
EMF [32] serves as a technical base for our implementation,
which is described later in this paper (see Sect. 6).

Since the definitions of the IEEE 1471/ISO 42010 stan-
dard [28,29] give only a broad definition of the terms and do
not distinguish between view types and actual view instances,
we will use an extension of the definition of Goldschmidt

l..x 1.
represents

parts of

shows
elements of

ES

* | view types

*
-7-View Point
defines

Fig. 1 Terminology for view-based modeling used in this article
(adapted from [4])

et al. [4,33], given in Definition 1. The full terminology used
in this paper is shown in Fig. 1.

Definition 1 (View type) A view type defines the set of meta-
classes whose instances can be displayed by a view. It com-
prises a definition of a concrete syntax plus a mapping to the
abstract metamodel syntax. The actual view is an instance of
a view type showing an actual set of objects and their rela-
tions using a certain representation. A viewpoint defines a
concern.

In UML, for example, the diagram types, such as sequence
or class diagrams, are view types. An actual diagram contain-
ing classes A, B, and C is an example for a view. The static
architecture or dynamic aspects of a system are viewpoints
in UML.

The difference of Definition 1 to the IEEE/ISO standard
is the introduction of the term view type. Technically, a view
type is a metamodel of which actual views are instances. The
view type is independent from the metamodel it represents;
it may represent elements from, be a subset of, or be identi-
cal with another metamodel, but may also contain specially
defined elements which are not part of any other metamodel.
An actual view that is an instance of the view type can restrict,
aggregate, and reorganize information from other models.

In contrast to the definition of Goldschmidt et al. [4], we
have extended the definition so that a view type can represent
parts of multiple metamodels. To define the elements which
are represented by the view types and views, we introduce
the notion of scope for view types.

Definition 2 (Scope of view types) The projectional scope of
aview type is defined by the elements types which are part of
the view type and their relation to elements on the metamodel
which the view type represents (see Fig. 1). View types with
a single-metamodel projectional scope represent only one
metamodel. View types with a multi-metamodel projectional
scope contain elements which represent elements from multi-
ple metamodels. The selectional scope of a view type defines
restrictions on the instance level of elements. Although the
selectional scope is primarily defined in the actual views, the
view type can also define instance-based limitations.

@ Springer

www.manaraa.com

476

E. Burger et al.

In the view type, elements such as classes, attributes, and
references represent elements of the metamodels which are
used to describe software systems. The projectional scope
can be expressed as a mapping of the view type elements to
the other metamodel elements and usually model-to-model
transformations between them. The selectional scope can be
defined by constraints on the view type metamodel, which
is valid for all views that instatiate the view type, and by the
(manual) selection of elements, which is specific for each
view.

2.2 Query languages

Creating views for instances of heterogeneous metamodels is
similar to the definition of views in relational databases [34],
where views are defined as stored queries and can be used as
virtual tables. Queries in relational databases combine data
from tables with heterogeneous table schemata and define a
new table schema for the result set, as well as the selection
of elements in the result set. The table schema of the result
set in relational databases corresponds to the view type in the
model-driven world. Thus, a view in the model-driven world
that offers comparable possibilities would have to comprise
the definition of a view type and the selection of elements for
the actual views.

Existing query languages for EMF [8,9,12] exploit the
analogy to database systems and use an SQL-like textual con-
crete syntax, but offer only projectional operators. Thus, the
result of a query contains only a subset of the original infor-
mation. Thus, it is not possible to query information that is
spread across instances of several metamodels and to display
the resultin an integrated metamodel directly. To achieve this,
atarget metamodel and model transformations would have to
be specified, which introduces high efforts for the developer,
since the metamodel and the transformations change as the
information needs of the user change. Thus, the metamodel
and the transformations have to be adapted manually.

3 Flexible view types for model-driven development
3.1 Motivation

Every software project that makes use of metamodeling tech-
niques and models faces the problem that information about
the system, which contains the entities of interest, is spread
across instances of different metamodels. We will call such
instances heterogeneous models in the following. Although
representing an entity of interest in multiple formalisms may
lead to redundancies, it may still be necessary to do so, either
to represent various levels of abstraction, to describe differ-
ent view points on the system, or because compatibility to
legacy software requires the usage of specific metamodels.

@ Springer

In model-driven software development (MDSD) processes,
heterogeneous models are used to describe a software system
in different stages of development. For example, the system
architecture may be described by instances of a component
model, while the object-oriented design is described using
UML class diagrams. The execution semantics of the sys-
tem is defined by the implementation code using a general-
purpose programming language like Java. Additionally, sev-
eral domain-specific metamodels may be used to describe
further aspects, such as network topologies, energy consump-
tion, or the performance of the system.

We have identified the following problem areas that arise
from the usage of heterogeneous models (illustrated with the
MDSD example):

Traceability: The artifacts of heterogeneous models, such
as components, classes, and code, are semantically related:
Several classes implement a component, code conforms to
the object-oriented design and realizes the architecture. This
trace information is, however, rarely persisted: If at all, it is
persisted in natural language definitions, such as the system
documentation. Since there is no or little support by devel-
opment frameworks, trace information is not available in
the models themselves. If users have information needs that
require gathering information from several different artifact
types, they cannot rely on tool support, but have to aggregate
this information manually.

Redundancy/consistency: If information about the same
entity is represented by instances of heterogeneous meta-
models, the same piece of information (e.g., a class name) is
stored redundantly in several artifacts. If tracing information
is missing, changes to a single artifact may lead to inconsis-
tencies; if a user modifies a model, he or she may be unaware
that this produces an inconsistency with another artifact. If
the tracing information is present, additional efforts are nec-
essary to represent the change in all artifacts and to resolve
inconsistencies.

Evolution: If metamodels are modified, existing instances
have to be migrated to the new version using co-evolution
techniques [35,36]. In a scenario of heterogeneous intercon-
nected metamodels, which can evolve independently, this
imposes additional complexity, since the consistency and
traceability links on the instance level and their construc-
tion rules on the metamodel level also have to be updated.
In the case that existing metamodels have to be used either
to meet standards, or because of other conventions that are
not in the responsibility of the developers, it is often not
possible to modify the metamodels. To integrate information
from several metamodels, non-intrusive metamodel exten-
sion techniques [37] have to be used.

www.manaraa.com

477

Software development with ModelJoin
flexible view

@ type definition

User 1 >

creates

& flexible view
type definition

User 2 >

creates

Flexible view 2

Fig. 2 Flexible views concept example
3.2 Flexible view types

View-based approaches try to tackle the aforementioned
problems by decoupling the way a system is represented to
the user from the way that it is technically represented in the
infrastructure.

The available view types are usually predefined by stan-
dards or by the availability in development tools. Our concept
of flexible view types offers custom, user-defined view types.
It can be used by developers who would like to re-arrange,
aggregate, or combine information that is distributed among
instances of heterogeneous metamodels.

Definition 3 (Flexible view type) A flexible view type over a
set of models contains:

— the definition of the view type metamodel and its pro-
jectional scope. The view type may have a single- or
multi-metamodel projectional scope;

— the definition of the selectional scope, i.e., the selection
of elements that is contained in the flexible view. This
selection is based on instance properties;

— a set of rules for editability of the view and for the back
propagation to the source models.

The abstract concept of flexible view types can be seen in
Fig. 2: Two metamodels M M| and M M, and their respec-
tive instances Model 1 and Model 2 share a semantic overlap,
i.e., different elements of M M| and M M, represent the same
entity type in the system of interest. In the example, this is
indicated by similar naming of the elements on metamodel
level (A corresponds to A’, etc.) and on model level (a cor-
responds to a’, etc.). Each of the models carries additional
information which is not available in the respective other
model (elements x, y and the references to these elements).
User 1 wants to create a view that aggregates all information
from Model 1 and Model 2 while at the same time display-

— a:A 1
«instance»
MM,

————— >

Metamodel 1

a:A . —
i — ey | M,
: b B Metamodel 2
Model 2

ing overlapping elements as one element. The resulting view
(Flexible view 1) integrates information from both models
and identifies the overlapping elements by a naming conven-
tion. User 2 creates a view which shows the elements of type
C in addition to the overlapping elements. The projectional
and selectional scope of a flexible view type is specified in
the flexible view type definition.

The concept of flexible views has been presented in a pre-
vious paper [6]. It has since been extended by the definition
of view type scopes.

3.3 ModelJoin: a language for flexible view type definitions

ModelJoin serves as a description language for flexible view
type definitions. With ModelJoin, developers can create flex-
ible view types rapidly, having to specify neither the meta-
model behind the view type nor the transformation rules
needed between the source models and the view. These
artifacts can be generated automatically using a ModelJoin
expression as input.

A ModelJoin expression defines the projectional and
selectional scopes of a flexible view type. It contains suffi-
cient information to generate a metamodel for the view type,
if such a metamodel does not exist already. Since ModelJoin
supports multi-metamodel projectional scopes, users can sat-
isfy information need on the underlying system that cannot
be answered by examining the single models independently.
ModelJoin does not contain a specification of editability and
synchronization yet; thus, the view types created with Mod-
elJoin are read-only. The generated view types and transfor-
mations can, however, be used as a starting point for more
sophisticated, editable views. If a view type is to be extended
for editability, developers can adapt the target metamodel
and the transformations manually and can generate and cus-
tomize editors for the target metamodel.

The problem areas which we have mentioned in Sect. 3.1
are addressed by ModelJoin in the following way: The trace-

@ Springer

www.manaraa.com

478

E. Burger et al.

ability between heterogeneous artifacts can be improved
by creating custom view types which integrate information
based on properties of the artifacts, such as name equality or
common identifiers. This way, integrated views can be cre-
ated for heterogeneous models that are not explicitly linked.
Redundancies in the models themselves are not reduced by
ModelJoin, since the approach is non-intrusive and does not
change the source models or metamodels. It is, however, pos-
sible to create integrated views which are free of redundan-
cies, and which can be used to determine if inconsistencies
in the source models exist. In the case of metamodel evolu-
tion, the flexible view types created in ModelJoin coevolve
automatically, since they are generated from the definition in
the ModelJoin DSL. This definition may of course have to be
adapted to the new version of the metamodel with respect to
refactorings or renames. The effort of adapting a ModelJoin
expression is, however, significantly lower than the effort of
adapting the view types, instances, and transformations man-
ually.

4 Motivating example

To illustrate the view type definition and the definition of
flexible views (Definition 3), we give an example from the
field of model-based performance analysis. The two main
metamodels used throughout this section are as follows: First,
adescription of a component-based software architecture and
its relevant performance influences; second, the results of a
performance prediction, which are stored in a data model that
defines different sensors.

Technically, these models are independent from each other
since the sensors can be used for storage of various data
items (beyond software performance data). The idea of our
flexible view concept is to combine the information stored in
the two models without explicit postprocessing of the data.
We bring together information from the software architecture
description, such as components and interfaces, and from the
performance prediction, such as sensors, measurements, and
experiments. The integrated views that are generated from

Fig. 3 Extract of the Palladio
Component Metamodel,
strongly simplified from the
PCM technical report [38]

5| NamedElement [2]
(from entity)
T entityName : EString

El Entity (2]
(from entity)

[] AssemblyContext (7|
(from composition)

@ Springer

the query statements can be used for specific analyses. We
give examples of what types of questions can be answered
by combining the two models.

4.1 Software architecture model

The Palladio Component Model (PCM) is a component
metamodel used to predict performance and reliability of
component-based software systems. It consists of several
sub-metamodels which are used to model a software system.
A software architecture is modeled as a set of components
which provide services. The actual behaviors of services are
modeled as abstract Service Effect Specifications (SEFFs).
A deployment model is used to store the mapping of compo-
nents to modeled hardware resource containers. The current
Palladio metamodel comprises ~100 classes and ~200 other
metamodel elements. For a more detailed description of the
PCM, we refer to a journal paper [19] or the Palladio Tech-
nical Report [38].

Taking into account the following characteristics of a soft-
ware system, the performance is predicted using a simulation:

1. Usage profile: The number of users and their access rates
and the services that are used.

2. Internal structure: An abstraction of the internal structure
of components, i.e., control- and data flow.

3. Dependent services: External services that are used by
the system. Usually a black box view of the performance-
relevant behavior.

4. Resource environment: Hardware- and virtual nodes and
execution environments on which the components run.

The complete Palladio Component Model is too large to
reproduce it here. Instead, we illustrate only those elements
referenced in the example queries. Elements from three dif-
ferent packages are referenced (see Fig. 3). BasicCompo-
nents and CompositeComponents are the types of com-
ponents that can be instantiated by an AssemblyContext.
The component types are defined as part of a repository

[RepositoryComponer2]
(from repository)

encapsulatedComponent,
1

ssemblyContext

| ImplementationComponentType [2]
(from repository)
5 componentType : ComponentType

T

|5} CompositeComponent IEI_|
(from repository)

H BasicComponent (7|
(from repository)

www.manaraa.com

Software development with ModelJoin

479

E Experiment experimentRuns

= experimentName : EString
= experimentlD : ELong

E ExperimentRun
= experimentDateTime : EString
= experimentRunID : ELong

experiment
0..1

sensors
0.*

[Sensor
= sensorName : EString
= sensorlD : ELong

measurements
0.%

measurements

0 [Measurement

= measurementID : ELong
= eventTime : EDouble

sensor
1

Fig. 4 Metamodel of the sensor framework

mechanism. After definition of the types, the structural model
(from package composition) defines how they are assembled
and connected. The entity package defines commonly used
attributes such as entityName.

4.2 Performance data model

To perform a prediction on the modeled system, the model is
transformed by the Palladio simulator to an executable sim-
ulation model using a model-to-text transformation. During
the execution of the simulation, measurements usually have
to be carried out to obtain information on the chosen quality
metrics. Currently, two kinds of measurements are supported:

— TimeSpanMeasurements capture time durations, e.g.,
when measuring the time span between receiving a
request and sending the corresponding response;

— StateMeasurements capture state changes of simulated
entities, e.g., the number of active requests in a system.

Measurements are always appendant to a unique sensor that
is attached to a simulated entity of interest. Furthermore, each
measurement is assigned to an experiment run, as parameters
of the simulation can vary throughout. The experiment runs
belong to an experiment that also contains the various sen-
sors. The simulation uses a specific model to persist the mea-
surements from the simulation sensors. Furthermore, Exper-
iments and ExperimentRuns can be used in this model
to group measurements. Figure 4 shows the corresponding
metamodel. The model used as input of the simulation and the
result model were intentionally not tightly linked, to enable
the analysis of results without needing the input model.

4.3 Usage scenarios

We illustrate in the following the different usage scenarios of
flexible view types based on the two models discussed so far.
The concept is exemplified using an integration of software
architecture models with performance prediction results.

Integration of data from different models Architecture and
performance prediction models can represent the same entity
from different perspectives. The software architecture model
represents static structures, such as components, interfaces,

and their deployment to virtual or hardware nodes. When
some execution semantics is added to the components as an
abstraction of the performance-relevant attributes, the soft-
ware can be simulated producing a (usually large) set of
measurement data. These data are not directly connected to
the software model, but represented as instances of the Sen-
sor Framework metamodel (Fig. 4). The semantic overlap is
given by the sensorName of a Sensor. Usually, this is the
unique identifier of an assembled component. Now, several
questions can be asked regarding the connection of the two
models.

— What is the simulated response time at a specific point in
the architecture, e.g., for a BasicComponent in Fig. 3?
To answer this question, the data from the sensor model
must be attached to the software architecture model.

— What is the average utilization of a hardware node over
multiple experiment runs? To answer this, the informa-
tion from the sensor model must be joined with the hard-
ware node from the software architecture model.

A manual approach to these questions would be, first, to
write some specialized code that attaches the data to the soft-
ware model. Of course, methods for all different queries have
to be written. Second, a new model can be created com-
bining the two models (decorating the two) making explicit
the semantic overlap by directly referencing the respective
elements. After that, a model transformation can derive the
attributes of the decorating model. This solution might suffer
from scalability issues since for all combinations of model
elements, new matching elements of the decorator have to be
created. Writing the transformation for each new query will
be cumbersome.

Instead, we propose to specify the query based on the two
(meta-)models and have a derived transformation take care
of the integration of the two models. This transformation is
automatically generated from the query and the two meta-
models.

On-the-fly generation of view types The abovementioned
scenario of integrating two models that share a semantic
basis, but are not connected, raises a second question. The
result of a query that integrates the two models can be repre-
sented by a new metamodel. For example, one could special-
ize the Component element from the software architecture
model by subclassing and adding attributes from the sensor
model. This solution fits, however, only one specific query
(asking for the response time of a component).

Flexible view types can be used to specify the ele-
ments from the two metamodels that should be combined
or selected. Developers can derive the needed elements from
the two models and combine them using a flexible view type
definition. For example, references can be added on-the-fly

@ Springer

www.manaraa.com

480

E. Burger et al.

to support navigability. The view type metamodel is volatile
in the sense that it is generated each time its definition is
changed. It can be, however, persisted for future reuse.

5 The ModelJoin language

In this section, we will present the abstract syntax of the
ModelJoin domain-specific language (DSL) and give a for-
mal definition of the semantics of the operators.

5.1 Language design

The ModelJoin DSL is inspired by relational algebra, where
queries can be used on different relational schemata. When
a query on a relational database is executed, the result set
contains relations that instantiate a new relation schema
which depends on the query itself. In SQL, for example,
the table schema of the result of a query is dependent on the
columns chosen in the SELECT clauses, renaming opera-
tors (AS), JOIN operators, and other constructs. If we trans-
fer this concept to the model-driven world, it means that a
query defines a new metamodel for the results. The result
set is a model that instantiates this metamodel. It combines
information from heterogeneous models into a single result
model.

Existing query languages for Ecore-based models offer,
however, either only projectional operations on instances of a
single metamodel (e.g., EMFQuery [8]), thus making queries
on heterogeneous models impossible, or require a fixed pre-
defined result metamodel to execute a query on heteroge-
neous models (e.g., QVT [12], ATL [39]). To overcome this
limitation, ModelJoin includes operators for selection, pro-
jection, and joining of elements from heterogeneous models.
In contrast to the aforementioned existing query languages
and engines, the result of the evaluation of a ModelJoin
expression contains elements which are instances of a new
target metamodel that is generated during execution of the
query.

In the following subsections, we will define the ModelJoin
operators, which are semantically similar, but not equivalent,
to Selection, Projection, and Join of relational algebra.

A ModelJoin expression takes at least two models as input,
called source models in the following, which conform to the
source metamodels. The evaluation of a ModelJoin expres-
sion returns a result set, called the target model, which con-
forms to the target metamodel (see Fig. 5).

To distinguish between the elements on the metamodel
level and on the model level, we will refer to the elements of
the metamodel as classes, attributes, and references. The ele-
ments on the model level, i.e., the instances, will be denom-
inated as objects, attribute values, and links, respectively.

@ Springer

Source . _ _references> Source
Metamodel 1 0y Metamodel 2
" N "

3t 3t

g! : g!

EX ModelJoin EX

ER Query ER

g1 g1

- input -
Source Source
Model 1 1 { Model 2

Y

Execution

output output

Fig. 5 ModelJoin target and source models
5.2 Set notation of metamodels

Our approach is based on the Ecore metamodel of the Eclipse
Modeling Framework [32]. For the formal definitions of the
semantics of ModelJoin, we will use the set notation of the
OCL specification [40, Appendix A] for metamodel entities
and instances, which is based on complete MOF [41]. Since
our approach is based on Ecore, the definition listed in the
following does not contain concepts such as object-valued
attributes, associations with more than two ends, and role
names, which are part of MOF, but not of Ecore.

5.2.1 Set notation of Ecore

Here, we list the subset of the OCL specification which we
will use for the definition of the ModelJoin abstract syntax.
We only give a brief description for the elements here; for a
full definition of the elements, see [40, Appendix Al].

— CLASS is the set of class names with a generalization
hierarchy <

— A = CLASS U .7 U ATT U REF is the set of named
elements

— 7 is the set of type names where ¢, € .7 is the type of a
class ¢ € CLASS

— I C . is the set of hard-coded basic (=primitive) type
names; Jp = {UnlimitedNatural, Integer, Real,
Boolean, String}

— ATT is the set of all attribute signatures. The set of
attribute signatures ATT, of a class ¢ € CLASS is defined
asa:t. —t;t € Ip

— REF is the set of reference names. REF, is the set of ref-
erences of a class ¢ € CLASS. A reference r € REF, has
a signature associates(r) = {(c, ¢’y € CLASS x CLASS

— The cardinality of attribute signatures and references is
expressed by function multiplicities(a) = N which
assigns each attribute or reference a non-empty set N C
Np with N # {0}

www.manaraa.com

Software development with ModelJoin

481

— OCpasss OATT> ORgr are snapshot functions that return a
set of all instances of a given class, attribute or reference,
together forming the system state

— I(c) = {cy, ¢y, ...} is the set of possible instances of a
class ¢ € CLASS

— L(r)(c;) € I(cy) is the set of instances that are linked
to ¢, € I(c) via a reference r with the signature
associates(r) = {(c1, c2)

The term system state in the OCL definition denotes the
set of instances of the metamodels.

Definition 4 (Metamodel) A metamodel is a structure

m := (CLASS, ATT, REF, associates, multiplicites, <)

To distinguish between source and target metamodels,
we will write Mource = {Msource; Y Msource; Y ...} and
Miarger with the respective sets CLASS;ource; CLASS argers
ATTsources ATTiarger, and so on, which together form
f/%uurce and f/%arget'

Note that the elements ¢, ¢’ € CLASS represent class
names; hence, ¢ = ¢’ expresses that the (simple) names
of two elements are identical, but not object identity. The
identity of classes is expressed by the identity of their types:

te =1y
5.2.2 Type system

The OCL standard contains a generalization hierarchy < with
the reflexive extension <. The sets ATT. and REF, contain
the attributes and associations for a class c. The sets ATT;
and REF, additionally contain the attributes and associations
inherited from all superclasses of c.

The OCL standard contains the primitive types Unlimit-
edNatural, Integer, Real, Boolean, and String. The operator
=, only allows the comparison of elements of the exact same
type, so it is not possible to compare, e.g., integers with real
numbers. We weaken this requirement for ModelJoin and
allow coercion for the number types UnlimitedNatural, Inte-
ger, and Real.

5.3 Abstract syntax

The ModelJoin language is declarative, so the ModelJoin
expressions describe the desired properties of source and tar-
get elements after the execution of the query. In the formal
definition, we express this as relations between the source and
target sets. A ModelJoin expression is a relation between a
set of n source metamodels and one target metamodel:

q € 2= <msource1 s Msourceys « -+ > Msourcey,» mtarget>

e Mn+1

Since the result of the execution of a ModelJoin query con-
tains not only the metamodel, but also instances, the relation
is twofold. The ModelJoin expressions will be described as
such in the following: First, the signature of the expressions
and the properties of the elements of the target metamodel
are defined; second, the properties of the system state (i.e.,
the instances) are defined. We will define the effects on the
system state as boundary conditions of the target metamodel.
The properties of the target metamodel only depend on the
source metamodel and the query, but not on its instances,
so the target metamodel can always be computed via static
analysis of a ModelJoin expression and the source metamod-
els. Thus, the same ModelJoin expression can be used with
different instances, using the same target metamodel.

There are four kinds of ModelJoin expressions:

Jjoin expressions Xe _#
— keep expressions k €
selection expression ¢ € .
rename expressions p € %

Thus, 2 = J U ¥ U R U .%. These expressions
are described in detail in the following subsections. We will
define them as relations over the sets of classes, since they are
not functions in the mathematical sense. The element of the
target class represents the “return value” of the expression.

Definition 5 (Mapping relation) The target metamodel and
model contain elements that represent elements in the source
metamodels and models (cf. Fig. 1). To express this, we intro-
duce a mapping relation both on metamodel and on model
level. A named element e € A5, ce is mapped to a named
element e’ € Niarger With the uniquely defined relation

~n={(e,e') € N x A | eis mapped to e}

The elements in .4 are on metamodel level. Thus,
the mapping relation ~y is also defined on metamodel
level. For possible instances I(c), I(c) of classes ¢ €
CLASSsource, ¢’ € CLASS;qrger, the instance mapping rela-
tion is defined on model level as

~wx={(c.c') € I(c) x I(c') | ¢ is mapped to ¢}
5.3.1 Join expressions

The core concept of our approach is the joining of model
elements from heterogeneous models. This may be used for
elements which represent the same concept in two different
metamodels (cf. the example in Fig. 2). The join operators
are defined over two metamodel classes as input and return a
target class, which is newly created in the target metamodel
with a specified name. Join operations are ternary relations
over two source metamodels and one target metamodel. It is,

@ Springer

www.manaraa.com

482

E. Burger et al.

however, also possible to join more than two source meta-
models by cascading join operations, so that the target meta-
model of one join operation serves as the source metamodel
of another join operation. Furthermore, classes can be joined
with themselves.

In analogy to relational algebra, we define a natural join
operator, which joins classes based on identically named
attributes that have a compatible type. We call these attributes
Jjoin-conforming. If two classes are joined with a natural join,
join-conforming attributes in both of the classes are added to
the resulting class in the target metamodel, similar to the
columns of the result table of a relational join operation. On
instance level, two objects are joined if they have the same
values in the join-conforming attributes, and a corresponding
object is created in the target model.

Definition 6 (Join conformity) Let a; € ATT, : t,, — 1
and a; € ATT,, : t., — t be attributes of classes ¢y, c2 €
CLASS. Join conformity is a property on metamodel level. It
is given if two attributes have the same name, type (allowing
coercion), and multiplicities:

Zarr = (a1, a2) EATT X ATT, | (a1 = a2) A (11 = 12)
A (multiplicities(ay) = multiplicities(az))}

For two classes c¢; and ¢, all possibly joinable attributes
are contained in the set of join-conforming attribute pairs:

X * * ~
Al o, = Ha1,a2) € ATT, X ATT,, | a1 Sy a2}

On the instance level, two objects ¢; € I(c1), ¢, € I(c2)
fulfill instance-conformity if they carry equal values in their
join-conforming attributes:

=, = {{c;, ¢y) € I(c1) x I(c2) | Y1, a2)
e A% (oarr(a(c)) = oarr(@)(cy))}

With these helper sets and relations, we will now define
the join operations.

Definition 7 (Naturaljoin) For two classes c1€ CLASS ource, »
2 € CLASSsource, and a target class ¢’ € CLASS4rger, the
natural join is defined as

/
M = (c1, c2, ") € CLASSsource; X CLASSsources
XCLASStarget

where the target class and its instances have the following
properties:

— The mapping relation holds for each of the source classes
and the target class: (c; ~x ¢') A (2 ~x)

— For each of the join-conforming attribute pairs in the
source classes, an attribute of the same name and type
exists in the target class: V{aj,az) € ACD‘]‘,CZEI a €

ATTCr((a’ tte = tD)A(a =ad)A(a) ~x d)A(a2 ~x

a’))

@ Springer

— For all instance-conforming pairs in the source mod-
els, an instance that has the same attribute values in
the join-conforming attributes exists in the target model:
V{cy, €2) € ocpass(cl) X UCLAss(CZ)(Ql =1, =>3c €
ocass(€) (¢ = 21))

When executing a natural join expression, the target class
¢’ is always created and contains only the common attributes.
If no common attributes exist, the target class is gener-
ated without attributes. This is different to the natural join
in relational algebra in two ways: Firstly, the natural join
in ModelJoin does not add the other non-join-conforming
attributes to the target class; secondly, it does not degener-
ate to the cartesian product if no common attributes exist.
To add attributes to a class in the target metamodel, the keep
attributes expression is used (see Sect. 5.3.2). In contrast to
the projectional approach in relational algebra, we use a con-
structive way of building the target metamodel. The name of
the target class is by default set to the ¢ and can be changed
with the rename expression.

ModelJoin furthermore provides a outer join operator,
which also creates instances of the target metamodel for
unmatched instances of elements in one of CLASS . ce-

Definition 8 (Outer join) The outer join operator is equiv-
alent to the natural join operator in its type signature and
the constraints on the target metamodel. Deviating from the
natural join, the result set {g’l, g’z, ...} contains a respective
instance for each instance in the source model, regardless of
instance-conformity:

/ / ! o~
Ve € ocppass(€1)3 € € ocpass(c)(E =I 91)
/ / !~
AVey € ociass(€2)T ¢ € Ocpass(C)(E =/ 92)

In addition to the general outer join, there is a left outer join
and right outer join operator which only creates instances for
the left class (c) and right class (c3), respectively.

The natural and outer joins are specialized operators for
the most common cases of attribute equality in heterogeneous
classes, when attributes have the same name and a compatible
type. The join condition can, however, be generalized from
join conformity to arbitrary logical conditions (depending
on the actual language used in the implementation) on the
instances of the source metamodels. In analogy to relational
algebra, we call this operator theta join.

Definition 9 (Theta join) For source classes c¢; €
CLASSsource;> €2 € CLASSsource,» @ target class ¢’ €
CLASSqrger, and a logical expression 8 = I(c1) U I (c2) —
true, false, the theta join is defined as

Mg = (c1, c2, ¢’) € CLASSsource; X CLASSsource,

X CLASS;arget

where the target class ¢’ has the following properties:

www.manaraa.com

Software development with ModelJoin

483

— The mapping relation holds from the source classes to
the target class: (c; ~x ¢') A (c2 ~x)

— For all pairs in the source models for which the join con-
dition 6 holds, an instance exists in the target model:
V{c1, ¢) € ocpass(cn) X UCLAss(CZ)(e(Ep ¢y) = 3 e
OcLass(€) ((91 ~x A () ~X Q/)))

The target class ¢’ does not have to contain any attributes
from the source classes; if desired, they have to be added man-
ually by a keep attributes statement. (This behavior is differ-
ent to the theta join of relational algebra, where all columns
are added to the result table.)

The theta join is the most general of join operators, since
it can contain an arbitrary join condition. In the prototypical
implementation, these conditions can be expressed in OCL.
Natural and outer joins can theoretically be expressed by
a theta join operator where the 6-expression contains the
join conformity constraints, and appropriate keep attribute
expressions, which add the join-conforming attributes.

5.3.2 Keep expressions

The keep operator defines additional structural features (i.e.,
attributes and references) and supertype relations of the tar-
get model which are not defined by the join operators. It
serves a purpose which is similar to the projection operator
in relational algebra, but unlike projection, the keep opera-
tor is constructive: if there is no explicit keep statement, no
attributes (apart from those which are added because they
are part of a join condition) or references are included in
the target metamodel. The rationale behind this behavior is
to avoid the potentially high number of attributes and ref-
erences inherited from superclasses. Keep operators can be
applied to classes which have been mapped by join operators
or other keep operators.

There are different operators for the inclusion of attributes,
references, and supertype relations. For the definition of ref-
erences in set notation, we assume the existence of functions
associates() and multiplicities() that express the respec-
tive properties of a reference as described in [40].

Definition 10 (Keep attributes) Leta : t. — t € ATTZK. be
an attribute of class ¢ € CLASSource (directly defined or in
one of its superclasses) and ¢’ € CLASS;q g a class in the
target metamodel with ¢ ~ ¢’. The keep attributes operator
is then defined as

Kair = {a,d’) € ATT, X ATTy
where the target attribute a’ has the following properties:
e a’isanattribute of the targetclass¢’:a’ : 1o — t € ATTy

e a’ has the same name and multiplicity as the attribute @ in
the source class c. In case, the target class ¢’ was created

by an outer join, it is necessary to allow empty values for
the attribute, so the lower boundary of the multiplicity of
a’ must always be 0:

(a ~xd)A(a=a) A (multiplicities(a)
= multiplicities(a) U {0}).
e Theinstances of ¢’ carry the same attribute values as those

instances of ¢ that they are mapped to. For unmapped
instances, the attribute value is null (L):

Vc' € ocpass(€) @ oarr(a)(c)

oarr(@)(c)
1 else

if 3¢ € o ass(0) [€~ €

Attributes can also be defined as an aggregation of values
in the source model, similar to the SQL feature GROUP BY.

Definition 11 (Aggregation function) An aggregation func-
tion is defined as f, : S > R, S € R”?

ModelJoin supports the following five arithmetic aggre-
gation functions:

— sum: foum(S1, ..., 80) = D ry Si

— average: favg(s1,...,8,) = %ZLI Si

— maximum: fmax(s1, ..., S,) = max(sy, ..
— minimum: fyin(sy, ..., $,) = min(sy, ..
— size: fsize(s1, .-

'5s)’l)
<y Sn)
L, Sp) =n

The aggregation operator groups elements by a certain
reference through which they are linked to the source class.
The result of the aggregation is then persisted in an attribute
in the target class.

Definition 12 (Aggregation) Let r € REF;o,ce be a ref-
erence between classes ¢, ¢ € CLASSgource, 1.€., the ref-
erence signature is associates(r) = {(c,c¢), and let a
tz — t € ATT: be an attribute of class ¢ which is of
a numeral type t € {UnlimitedNatural, Integer, Real},
and let ¢’ € CLASS4rger be a class in the target metamodel
with ¢ ~ ¢/, and let f, be an aggregation function. The
aggregation operator is then defined as

o = (r,a,a’) € REF, x ATT; X ATTy

where the aggregate result a’ has the following properties:

— a’ is an attribute of the target class ¢’ with type 7:
a ity —t € ATTy

— The instances of ¢’ carry an attribute value in @’ that is
determined by an aggregation function f;, those instances
of ¢ that they are mapped to. For unmapped instances, the
attribute value is null (_L):

@ Springer

www.manaraa.com

484

E. Burger et al.

Ve’ € ocpass(€) 1 oarr(a@)(c)

_ fot(U GATT(&)(é)) if 3¢ € ocpass(c) |£Nﬁ£/
- CeL(r)(c)

1 else

Depending on the type of the aggregation function, the
aggregation operator is written as tsum, ®avg, Xmax> %min;
Or Ugize-

To generalize the aggregation operation, ModelJoin also
allows generic calculated attributes in the target model. The
values of these attributes are derived from arbitrary values of
source instances. They are, however, called calculated and
not derived in ModelJoin, since the term derived attribute is
defined in EMF as an attribute that is derived from other prop-
erties of the same instance. A calculated attribute in Mod-
elJoin depends on properties of source instances which are
not linked to the target instance in any way.

Definition 13 (Calculate attribute) Leta’ : to — t € ATT:,
be an attribute of type 7 in a target class ¢’ € CLASS;4,g¢s and
¢ = A" — t afunction over arbitrary elements with the
return type t. The calculate attribute operator is defined as

ep,a)e N

source

3y = (e, .. X ATTy

where the attribute values of @’ are defined by the function ¢
over instances ey, ..., €; C {ocrass U Oarr U orge}:

Ve' € ocpass(€) toarr(@)(c) = pler, ... en)

The operator for calculated attributes is the most general
way of defining attributes in the target model. The keep
attributes operator and the aggregations of Definition 12
can also be expressed by calculated attributes. In actual use
cases, the function ¢ will very likely (but not necessarily) be
over classes ¢, ¢ with ¢; ~ ¢/, so that the calculation is
based on instances ¢, ¢, that have been mapped to the target
instance by another operator. In the prototypical implemen-
tation, we use the general-purpose language OCL [40] for
the definition of calculated attributes.

The keep references operator defines which references
exist in the target metamodel. It can only be applied to classes
that have already been mapped, either at the start point of the
reference (keep outgoing) or at the end point of the reference
(keep incoming). If the class at the other side of the reference
has not been mapped yet by another join or keep operator, it
is generated in the target metamodel.

Definition 14 (Keep references) Let r € REFgq,,c. be a ref-
erence between classes ¢, ¢ € CLASS oy ce, 1.€., the reference
signature is associates(r) = (c, ¢), and ¢’ € CLASS;qrger @
class in the target metamodel with ¢ ~ ¢’. The keep refer-
ences operator is defined as:

Kref = (I, r') € REFsource X REF;4rget

where the target reference r’ has the following properties:

@ Springer

— r’ is defined between the classes that are mapping targets
of the classes of r. associates(r’) = (c/, ') A (¢ ~x
¢'); ¢" € CLASSarger

— Since there may be target instances where the refer-
ence is not set, the multiplicity of r’ is extended by 0:
multiplicities(r') = multiplicities(r) U {0}

— For every instance pair of ¢ and ¢ that is linked by r,
a mapped instance pair of ¢ and ¢ also exists that is
linked by ' ¥(c, &) € ogpass(c) x L(r) ()3, &) €
UCLAss(C/) X L(r/)(g/) | ¢ ~x Q/ /\é ~X é/

The evaluation of «,.s creates the class ¢’, if it does not
exist in the target metamodel, and creates the reference r’
reference between ¢’ and ¢’. In the prototypical implemen-
tation, the keep references operator is differentiated into a
keep outgoing and keep incoming operator, depending on the
direction of the reference.

If several classes are created in the target metamodel that
have a common superclass in the source model, common
attributes or references have to be created in each of the sin-
gle classes if they should be included in the target metamodel.
To avoid this redundancy, it is also possible to include super-
or subtype relations of the source metamodels in the target
metamodel with the keep supertype and keep subtype oper-
ators. Again, ModelJoin does not automatically create any
of these inheritances. They have to be made explicit by the
author of the ModelJoin expressions. If the respective super-
or subclass is not present in the target metamodel, it is created
during the execution of the ModelJoin expression.

Definition 15 (Keep supertype)Letc, ¢ € CLASSsources € €
CLASS;qrger be classes with ¢ < ¢ and ¢ ~ ¢’. The keep
supertype operator is defined as:

Ksuper = (c, CJ) € CLASSsource X CLASSturget
with 3¢’ € CLASSarger | (' <)YAN(E~n)
Definition 16 (Keep subtype) Let ¢, ¢ € CLASSspyrce; €' €

CLASS/arger be classes with ¢ > ¢ and ¢ ~ ¢. The keep
subtype operator is defined as:

Ksub = (C, CJ) € CLASS ource X CLASStarget
with 3¢ € CLASSarger | (¢ =)A€~y).

It should be noted that the kg per /ksup Operators do not
automatically alter the signature of attributes or references,
i.e., it does not move attributes or references to a superclass.
This has to be made explicit in the respective x4, and ko
operators. The keep super-/subtypes operators have no effect
on the system state of the target metamodel.

5.3.3 Select

The selection operator restricts the result set to a subset of
elements for which a logical predicate is fulfilled. Since only

www.manaraa.com

Software development with ModelJoin

485

the set of instances is reduced by this operator, selection does
not have any impact on the generated metamodel.

Definition 17 (Selection) Let I(c) be a set of instances of a
class ¢ € CLASS and ¢ = J — {true, false}, J C I(c) be
a logical expression over instances ¢ € I(c). The selection
operator is defined as an unary operator

Spl(c) ={cel(c) | p©)}

Our prototypical implementation uses OCL statements for
the logical expressions, since it is based on QVT. In general,
any other language could be used.

5.3.4 Rename

Since the join and keep operations take the entity names from
the first of the source elements as the name of the target
element, a rename operator is needed to specify the entity
names in the target metamodel.

Definition 18 (Rename) Lete, ¢’ € .4 be a names. Rename
is an unary operation p,(¢) = ¢’.

In the prototypical implementation, naming conflicts
which arise from rename operations are detected and pre-
sented in the editor, so that the user can resolve them manu-
ally.

5.4 Conformity between metamodels

The target metamodel can be completely derived from the
ModelJoin query. By default, it is created during the execu-
tion of the query. If a compatible target metamodel already
exists, itis, however, desirable to use this existing metamodel,
since further tools and processes, such as graphical editors
or model transformations, may already be defined for this
metamodel and can be reused.

To determine whether an existing metamodel is compat-
ible to a ModelJoin expression, we will use the following
conformity relation on metamodel level:

Definition 19 (Metamodel conformity) Let my, m, be
metamodels and I(mp), [(mj) the sets of all possible
instances of m and m,. Metamodel conformance is defined
as

conforms(my, my) < [(my) C I(my)

Metamodel conformity expresses that all instances of one
metamodel are also valid instances of another metamodel.
This means that if a ModelJoin expression ¢ defines the tar-
get metamodels n1;4rger, » then a metamodel m4,g1, can be
used for both expressions if conforms(marger;, Mrarger,)
holds. The metamodel m,4rg01, may be defined by a Mod-
elJoin expression g3, but can in general be an arbitrary meta-
model. The conformance relation between two metamodels

can be checked using our approach for state-based confor-
mance checking [42].

5.5 Assumptions/limitations

ModelJoin poses no assumptions on the structure or other
properties of the source metamodels. It is, however, neces-
sary that the semantic overlap between the source models
can be explicitly specified, so that meaningful flexible view
types can be defined on heterogeneous models. In simple
cases, such as identically named identifiers, the natural join
operators can be used to combine elements. In more complex
cases, the generic operators (theta join, calculate attribute)
with their OCL predicates can be used to specify the seman-
tic connection between the source models. Thus, ModelJoin
is only limited to the expressiveness of OCL.

ModelJoin cannot be used to create arbitrary view types,
since the target metamodel can only contain classes and fea-
tures that are derived from those in the source metamodels.
It is possible to use existing metamodels as target metamod-
els, if the conformity relation (Definition 19) holds between
the generated and the existing target metamodel. ModelJoin
is, however, neither suitable as a textual definition language
for metamodels nor as a general-purpose transformation lan-
guage.

Itis adesign rationale of ModelJoin that the developer con-
trols the elements that are included in the view type by explic-
itly specifying the relations between them and the source
models. Thus, our approach does not contain techniques for
identifying structural similarities of different metamodels.
ModelJoin assists the developer in the rapid definition and
creation of views, but not in determining the semantic overlap
of heterogeneous models.

6 Technical aspects

We have implemented the ModelJoin language defined in
Sect. 5 as an extension to the popular Eclipse modeling plat-
form.! Thus, a seamless integration with existing Eclipse-
based modeling tools is achieved.

The abstract syntax of the ModelJoin DSL has been
defined as an Ecore metamodel with an Xtext textual syn-
tax. Based on this textual syntax, a textual editor was devel-
oped. This makes it easy for the user to specify queries in a
natural, easy-to-read way. Features such as auto-completion
of metamodel elements, syntax-highlighting and on-the-fly
validation, help the user to write queries on models fast and
elegantly.

For transforming the models, i.e., executing the query, a
target metamodel is synthesized from the ModelJoin query

! http://www.eclipse.org/modeling/emf/.

@ Springer

www.manaraa.com

http://www.eclipse.org/modeling/emf/

486

E. Burger et al.

Metamodel

Synthesis

ModelJoin
Query

references !
1

Transformation
Generation

Legend

¥

Input \\ { Model-to-model
Metargodas k. Transformation

references
1

[] active system
() passive system/storage/data

— access:
' r{------- v iobet - . >0 read
«instance of» : _______________ / generated at compile time | «instance of» > write

Y Input Models ”

Transformation
Execution

4 \
——>(_ Join Result)

1
! (~) generated elements
T
I

N

generated at runtime

Fig. 6 Model workflow (in FMC notation [43])

and the corresponding input metamodels. It does not con-
tain any direct references to the source metamodels. This
generated metamodel is transient in the sense that it changes
when the query is changed. The model-to-model transforma-
tion from the source models to the target model is generated
as QVT-Operational code, using Xtend2 textual templates.
Both these artifacts, the target metamodel and the transfor-
mation executing the query, are generated at runtime, usually
after saving the ModelJoin query. This workflow is depicted
in Fig. 6.

Asrunning a query usually means executing several steps,
we chose to employ the Eclipse Modeling Workflow Engine
2 (MWE2) [44] in complement to the editing support. MWE2
eases loading of metamodels, handling of model slots, invok-
ing transformations, and the orchestration of workflow steps.
The sources of our prototypical ModelJoin implementation
are available on the ModelJoin wiki page.?

In the following, we outline the different steps needed to
execute a query.

6.1 Concrete textual syntax

The grammar for ModelJoin queries has been specified in
Xtext. Developers can use the generated Eclipse editors to
create queries interactively or can use the API to create
queries programmatically. The full grammar definition can
be found in [45] and is not reproduced here. Instead, we will
use the example in Listing 1 to explain the textual syntax.
The query in Listing 1 realizes the model-based perfor-
mance analysis scenario from Sect. 4. It defines a flexi-
ble view type that integrates information from the com-
ponent model and the performance results. The query
header (lines 1-3) defines the source and target metamod-
els Mgource;s Msource,» and Myqrger. The semantic overlap
in the models lies in the classes TimeSpanSensor from

2 http://sdqweb.ipd.kit.edu/wiki/ModelJoin.

@ Springer

the Sensor Framework metamodel and AssemblyContext
from the Palladio Component Model (PCM): A time span
sensor contains the simulation results for a component in a
certain assembly context. The overlap can be determined by
the identifier attribute id of an assembly context, which is a
substring of the attribute sensorName in the corresponding
sensor. In the query, this is realized in line 6 as a theta join
Mg (see Definition 9) with an OCL condition in the WHERE
clause. The AS clause determines the name AssemblyCon-
text of the class in the view type and realizes the rename
operator p. The names of the assembly context as well as
the name of the sensor are included with a keep attributes
operator k,;; in line 7. The component which is bound by
the assembly context is included with a ¢ operator (lines
8-12) and is named Component. To distinguish between
basic and composite components in the view type, the two
subtypes of Component are included by «y,;, operators in
lines 11-12. The statistic information of the sensor frame-
work is specified in lines 13-20. In addition to the name and
identifier of the sensor, the actual results are aggregated with
a operators to display the size, average value, and extrema
of the time spans. These values are represented as one object
per experiment run in the source model, but reduced to a
numerical attribute in the resulting view.

In the concrete syntax of ModelJoin, curly braces are used
for nesting of operators. This improves the readability of the
expressions since the target class of keep statements need not
be specified explicitly every time, and since the statements
are grouped by the elements in the target metamodel.

6.2 Metamodel synthesis

The metamodel synthesis module is used to generate the tar-
get metamodel. It uses an algorithm that, based on a parsed
model representation of a ModelJoin query, creates the result
classes, attributes, and references accordingly.

The implemented generation algorithm can be run in two
different modes: validation and generation. In the former

www.manaraa.com

http://sdqweb.ipd.kit.edu/wiki/ModelJoin

Software development with ModelJoin

487

mode, only warnings and errors of the provided query, lead-
ing to an incomplete target metamodel, are collected. The
actual synthesis and persistence of the target metamodel is
then only performed, using the latter mode, when no errors
were detected priorly. As a result, the algorithm is usually
executed twice.

In the following, a coarse description of the metamodel
generation algorithm will be given. For a detailed descrip-
tion of the algorithm, we refer the reader to the ModelJoin
technical report [45].

in the query. This package is later on used as default con-
tainer for the target metamodel classes. As next step, the join
statements are processed in the sequence of their occurrence
in the query. For each statement, a create class operation,
resembling the joined target class, is added.

For every natural join statement, the given classes are ana-
lyzed for join-conforming features, i.e., attributes having the
same name and types being type compatible. Type compat-
ibility is defined here according to the definition in Defini-

1 | import "platform:/plugin/de.uka.ipd.sdq.pcm/model/pcm.ecore"

2 | import "platform:/plugin/edu.kit.ipd.sdq.mdsd.sensormodel/model/Sensor.ecore"

3 |target "http://sdq.ipd.kit.edu/mdsd/ComponentSpeed/0.2"

4

5 |theta join Entities.TimeSpanSensor with pcm.core.composition.AssemblyContext

6 |where "TimeSpanSensor.sensorName.index0f (AssemblyContext.id) > 0" as jointarget.AssemblyContext {

7 keep attributes pcm.core.entity.NamedElement.entityName, Entities.Sensor.sensorName

8 keep outgoing pcm.core.composition.AssemblyContext.encapsulatedComponent__AssemblyContext as type

jointarget.Component {

9 keep attributes pcm.core.entity.NamedElement.entityName

10 keep subtype pcm.repository.BasicComponent as type jointarget.BasicComponent

11 keep subtype pcm.repository.CompositeComponent as type jointarget.CompositeComponent

12 }

13 keep incoming Entities.Experiment.sensors as type jointarget.Experiment {

14 keep attributes Entities.Experiment.experimentName, Entities.Experiment.experimentID

15 keep outgoing Entities.Experiment.experimentRuns as type jointarget.Run {

16 keep attributes Entities.ExperimentRun.experimentRunID, Entities.ExperimentRun.

experimentDateTime
17 keep aggregate size(Entities.ExperimentRun.measurements) as jointarget.Run.
measurementCount,

18 avg(Entities.TimeSpanMeasurement.timeSpan) over Entities.ExperimentRun.
measurements as jointarget.Run.avgTime,

19 min(Entities.TimeSpanMeasurement.timeSpan) over Entities.ExperimentRun.
measurements as jointarget.Run.minTime,

20 max (Entities.TimeSpanMeasurement.timeSpan) over Entities.ExperimentRun.
measurements as jointarget.Run.maxTime

21 }

22 }

23 |}

Listing 1 Response Time ModelJoin Example

During the execution of the algorithm, the metamodel
synthesis component keeps track of already mapped classes
from the source metamodel in a trace model, realizing the
relation ~,, of Definition 5. It uses this information to map
further references to the source classes to the correspond-
ing target classes accordingly. The trace model is embed-
ded in the generated metamodel using the Ecore annotation
mechanism.

The algorithm builds upon the set of metamodel oper-
ations introduced by Hermansdorfer et al. [36]. Required
operations for creating the metamodel are extracted from
the query by recursively traversing the statement-tree. Each
kind of operation is stored in a separate set, similar to the
command pattern described by Gamma et al. [46].

As the first step of the algorithm, a create package oper-
ation is added matching the target base package definition

tion 5.2.2. For each join-conforming feature identified, cor-
responding creation commands are added as well.

As next step, operations specifying required annotations
(see Sect. 6.3) for both joined classes and attributes are added.
Moreover, the OCL join conditions are added for every theta
join.

After all join statements have been processed, the keep
statements, associated with each join, are translated to meta-
model operations. As keep statements can be nested inside
other keep statements, with the exception of k,;; statements,
a recursive descent is performed. Every keep statement is
evaluated in the context of its parent keep or join statement:

— For all keep supertype and keep subtype statements
(Ksuper» Ksub), create class operations are added for the

@ Springer

www.manaraa.com

488

E. Burger et al.

Table 1 Operations used for the metamodel synthesis

Structural primitives X Ksuper /sub Kref Katt, 8¢, @

Create package X X X -
Create class X X X -
Create attribute X - - X
Create reference - - X -
Create data type - - - X
Create enum - - - X
Non-structural
primitives

Add super type - X - -

super or subclass the statement refers to. Furthermore,
add super type operations are created accordingly.

— For all keep reference statements (k,.r), create class
operations are added either for the target of the reference,
in the case of keep outgoing, or the source of the ref-
erence for keep incoming statements. Moreover, create
reference operations are created, referring to the mapped
class.

— Forall keep attribute, calculate attribute and aggregation
statements (kqs;, 8p, @), create attribute operations are
added. If an attribute refers to a non-standard data type, a
corresponding create data type or create enum operations
is added.

If any class to be created is situated in a sub-package of the
target package, create package operations are added corre-
spondingly. An overview on the created operations is shown
in Table 1. In addition to these operations, annotations spec-
ifying the provenance of classes, references, and attributes
are added.

After all metamodel operations have been extracted, they
are executed in a specific sequence:

— First, all create package and create class operations are
performed. Furthermore, data types, enums, and literals
are created.

— Second, the add super type operations are performed to
define the hierarchy of classes.

— Last, based on the hierarchy, references and attributes
are added. Starting from the topmost set of classes, it
is checked which references and attributes can be added
to the class. When an operation is encountered that is
meant to create an attribute or reference already present
in a superclass, it is discarded as it is subsumed by the
existing.

By first collecting all create operations, it is easy to detect
synthesis conflicts. A naming conflict is usually detected

@ Springer

H AssemblyContext
7 entityName : EString
= sensorName : EString

sensors

encapsulatedComponent__AssemblyContext

H Experiment
= experimentName : EString 1
= experimentID : ELong

H Component
T entityName : EString

o experimentRuns
[Run Zr

= experimentRunID : ELong

= experimentDateTime : EString
= measurementCount : Elnt

= avgTime : EDouble

= minTime : EDouble [
= maxTime : EDouble

| CompositeComponent |

[BasicComponent | [
1
[] 1

Fig. 7 Generated target metamodel for component speed example

when one of the operation sets already contains an equal cre-
ate operation resulting from another statement. In the case
of conflicts, e.g., when a class already has a structural fea-
ture with the requested name, the corresponding statement is
ignored and a warning is thrown. The user is then required to
take manual care of found naming conflicts by using renam-
ing operators.

During the execution of operations, errors can occut, e.g.,
when referred entities of an operation are missing in the target
metamodel. These errors are then traced back to the conflict-
ing statement and indicated to the user.

The generated metamodel for the running example can be
seen in Fig. 7.

6.3 Annotated target metamodel

Since both the transformation generation and the metamodel
generation need to know the relations from the input meta-
models to the target metamodel, the ModelJoin query would
have to be parsed twice to calculate the relation. Since this
would lead to duplicate code and redundant parsing of the
query, we decided to annotate the target metamodel with trac-
ing information.

During the generation of the target metamodel, the meta-
model generator extracts information from a ModelJoin
expression. The generator determines which elements of the
source metamodel were joined to an element of the target
metamodel, which was the attribute for the join condition,
etc. The information is stored in the target metamodel using
EAnnotation elements which reference the elements in the
source metamodels directly. Thus, the generated target meta-
model will contain references to the source metamodels, but
only inside EAnnotation elements. EAnnotations have a
name (called source in EMF), an element that they refer to
(reference), and can contain additional information details
in key/value pairs. Since EAnnotations cannot be differen-
tiated through subtypes, we have introduced naming conven-

www.manaraa.com

Software development with ModelJoin

489

. A\
«references via imports» |

——— e e

ModelJoin Source Source
Query Metamodel 1 Metamodel 2
Xtend2 Pe QVT-0 M2M

f 0O
Transformation A Transformation
Generation Model to text

Target

— e ——

Metamodel

Fig. 8 Transformation generation

tions for the different annotation types. The target metamodel
can be reused to create several target models.

6.4 Transformation generation

A ModelJoin query is executed as a model-to-model transfor-
mation taking the input models and resulting in a model that
conforms to the generated joint metamodel (as outlined in
Sect. 6.2). In order to generate the transformation, we used a
model-to-text (M2T) approach based on Xtend?2 (see Fig. 8),
which generates the transformation directly from templates.

We chose QVT-O [12] as transformation language because
of its stability, debugging support, and Eclipse integration.

The following steps are necessary when automatically
generating the transformation in the Xtend2 Transforma-
tion Generation step of Fig. 8.

1. Create the OCL expression to filter joinable elements. In
accordance with Definition 6, joinable means that they
have the same name and are type compatible.

2. Convert the (optional) where-clause to an OCL selection
on the joined elements.

3. Create mappings to transfer attributes from source to tar-
get model (only those marked as “keep”).

4. Create mappings to transfer references from source to
target model (only those marked as “keep”). Note that
this usually includes setting values to the newly created
meta classes in the target model.

5. Combine the single fragments generated in the preceding
steps 1.-4. to one transformation.

Let us consider the exemplary template shown in Fig. 9.
The theta join of FirstClass and SecondClass means that
the model elements are joined using a condition expressed
as an OCL constraint. The resulting QVT-O script will have
two mappings for realizing the join, as QVT-O has no sup-
port for n-to-1 mappings. While the first mapping is used
for checking the condition of the theta join and instantiat-

theta join FirstClass with SecondClass where "OCL-condition"
as.TargetClass. /i Rt K

- + 4 e

mapping FirstClassg: “-. y oG N

H thetaJoin_FirstClass;SqundClass;To;TargetCIass
(rightElement :

when { ;
0CL:condition

SecondClass)i»TargetClass
~- o

{-- creatéathg target instances
ioend { | <
rightElement.map thetaJoin_update’SecondClass(result);
Ly 2 :
3}l

: v o A\l
maﬁping SecondClass: :thetaJoin_update_SecondClass(rightElement
“s-TargetClass) i, TargetClass {
init { A
result:=rightElément;

}

Fig. 9 The QVT template for a theta join

ing the TargetClass, the second mapping is used solely
for storing tracing information. The tracing information is
later on required for resolving the source instances of a tar-
get instance. To be more specific, they are put to use in the
mappings created for transferring attributes and references.

In addition to the shown code, the main method of the
QVT-O script is extended to call the generated mappings for
the cartesian product of the sets of instances of FirstClass
and SecondClass. Mappings for natural joins are created
in a similar manner by using the joinable features, identified
during synthesis, as join criteria. For realizing the left outer
join functionality, the sets of instances that the mappings are
called with are adjusted accordingly.

6.5 Transformation execution

As last step of the ModelJoin query evaluation process, the
generated QVT-O transformation is executed to automati-
cally create instances for the synthesized metamodel (step
Model-to-model transformation in Fig. 6). Currently, our
workflow uses the QVT-O engine that is part of the Eclipse
M2M project. For every source metamodel, a corresponding
model can be defined in the workflow all of which are then
used as input models for the transformation engine. After
the transformation workflow has been executed, the result-
ing model can be visualized.

Transformation execution can be repeated for multiple
instances of the source metamodels without having to create
the target metamodel and transformations again, thus creat-
ing new views for the generated view type.

6.6 Reuse of target metamodels

Since the formal definition of the ModelJoin operators only
demands the existence of a target metamodel with certain

@ Springer

www.manaraa.com

490

E. Burger et al.

properties, target metamodels can be reused if the generated
target models are valid instances of the target metamodels.

Multiple execution of the same ModelJoin expression on
varying instances of the same source metamodels is the trivial
case of target metamodel reuse: Since the target metamodel is
identical, it can always be reused. In the prototypical imple-
mentation, this is achieved by executing the generated QVT-
O transformation on the varying instances.

If the ModelJoin expression is modified, the target meta-
model of the original expression can be reused if the meta-
model conformity (Definition 19) holds between the new and
the original target metamodel. We use our state-based con-
formance checking of [42] to determine the conformance
relation. This allows us to use arbitrary existing metamod-
els, even if they were not originally generated by ModelJoin.
Since the conformance check and the transformation gen-
eration require an (annotated) target metamodel as input,
the metamodel generation step cannot be omitted even if
an existing target metamodel is used. The reuse of the tar-
get metamodel still has the advantage that existing graphi-
cal editors and further transformations which are based on
this metamodel can be used for the results of the query
execution.

7 Case study
7.1 Example

For the evaluation of the ModelJoin language, we have con-
ducted a case study using the Palladio Component Model and
the Sensor Framework metamodel, as presented in Sect. 4.
We used the MediaStore example from [19] and simulated
performance properties of the MediaStore system. The per-
formance measurements were persisted as instances of the
Sensor Framework Metamodel. Since these metamodels are
only loosely coupled, i.e., do not contain direct references to
each other, the mapping of simulation results to the originat-
ing components and their elements has to be performed man-
ually. We used ModelJoin to create a custom partial view type
that only displays components, their name, and the assembly
context in which they reside. In addition, the adjacent time
span measurements are displayed, which have the attributes
measurement count, and the three statistical values mean,
standard deviation, and variance.

7.2 Empirical study

The envisioned benefit of ModelJoin is the reduced effort
for the definition of flexible views, in comparison with the
manual creation of target metamodels and transformations,
which are generated automatically by the implementation of

@ Springer

Table 2 Metrics for the manual implementation of the component
speed example

Metric Py P Ps Py Gen MJ
Metamodel

Classes 4 8 5 5 6

Attributes 4 14 0 5 7
References 3 6 7 2 2
Inheritance 1 8 2 2 3
Transformation

Source LoC 46 76 53 50 179 18
Operations 6 10 10 5 24 9

ModelJoin. Since this generated code is usually less readable
and more complex than code that has been written manually,
the benefit of ModelJoin in comparison with (its own) gener-
ated artifacts is of little interest here. Instead, we compared
ModelJoin to a manual implementation of the same view
type. The ModelJoin implementation generates Ecore meta-
models and QVT-O transformation code, so we chose these
languages for the comparison.

We asked researchers with experience in transformation
design to implement the view type and the transformation
using QVT-O. Four participants (P; — P4) were asked to cre-
ate a partial view which integrates information from the Pal-
ladio Component Model and the Sensor Framework Result
Model. The participants were familiar with the Palladio Com-
ponent Model and the transformation language QVT-O. The
measured sensor statistic values (mean, standard deviation,
and variance) should be assigned to the corresponding ele-
ments in the component model.

The task was given to the participants as a description in
natural language. No detailed information was provided on
where the desired information can be found in the respective
metamodels. The task sheet can be downloaded from the
ModelJoin wiki page.>

7.3 Evaluation

We used the M2M quality measurement framework* to ana-
lyze the QVT-O implementations. The results are depicted
in Table 2. Column Gen contains the values of the generated
artifacts of ModelJoin; column MJ contains the values of the
expression in the ModelJoin textual syntax.

Although such a small sample can deliver only limited
statistically significant results, it gives us a starting point for
the evaluation. Table 3 shows the statistics of the case study. S
is the standard deviation of the sample, P contains its average.

3 http://sdqweb.ipd.kit.edu/wiki/ModelJoin/Experiment.
4 http://code.google.com/p/m2m-quality/.

www.manaraa.com

http://sdqweb.ipd.kit.edu/wiki/ModelJoin/Experiment
http://code.google.com/p/m2m-quality/

Software development with ModelJoin

491

Table 3 Statistical evaluation of the empirical results

Metric ~ S(Pi.4) P Gen/M] T Significance
level

ClL. 1.732 5.50 6 -0.577 -

Attr. 5.909 5.75 7 —0423 -

Ref. 2.380 4.50 2 2100 80 %**

Inh. 3.202 3.25 3 0.156 -

LoC 13.475 56.25 18 5677 99 %*

Ops 2.630 7.75 9 -0951 -

* one-tailed test (1 — «)
s two-tailed test (1 — «/2)

T is the test statistic calculated by ﬁ(f’ —upmn/S. 1 —«a
(one-tailed test) or 1 — or/2 is the significance level at which
the null hypothesis can be rejected.

We applied Student’s one-sample ¢ test [47] in order to
analyze the data. For the case of the transformation, we cal-
culated the significance levels using the one-tailed t statistic
as we assumed that the experimental results would be larger
than the ModelJoin query. The metamodels were analyzed
using a two-tailed test. This is due to the fact that we did
not know in advance if the experimental results would have
larger or smaller metamodels than the automatically gener-
ated ones.

The results clearly indicate that the effort of manually
creating views on heterogeneous models is high and that
the specialized ModelJoin DSL reduces this effort. The null
hypothesis Hy stating that there is no difference between the
length of the definition with ModelJoin and the hand-written
QVT-O transformation can be rejected at a significance level
of 99 %. This significance level results from the alternative
hypothesis H; stating that the average number of lines of code
of the hand-written QVT-O transformations is higher than
the reference given by the ModelJoin query, i.e., & > .
There is no significant difference in the number of operations
between hand-written and automatically generated transfor-
mation code.

Analyzing the sizes of the manually defined metamod-
els and the metamodel generated from the ModelJoin query,
we got significant results only for the case of the number
of references. The alternative hypothesis that there is a dif-
ference, i.e., 4 # g, only holds for the number of ref-
erences in the metamodel which is significantly higher in
the experimental setup than in the automatically generated
case. From this observation, we conclude that the partici-
pants of the case study have over-engineered their solution
and added more to the model than needed by the (very pre-
cise) task specification. The numbers of classes, inheritances,
and attributes which are comparable to the reference solu-
tion can be explained by the task specification. A simple
noun-extraction approach led to a solution in line with the
reference. To avoid over-engineering of the solution, and to

save time and effort, a ModelJoin approach answering the
question was beneficial in the outlined case.

Summarizing, we draw the following conclusions from
the result of the case study:

1. ModelJoin offers a compact way for the definition of flex-
ible views, which can be seen by the number of modeled
artifacts and lines-of-code of the manual QVT-O transfor-
mations and metamodel definitions in comparison with
the size of the ModelJoin expression.

2. Manually implemented solutions for the creation of cus-
tom views tend to differ in the number of references used.
This promotes the usage of a domain-specific language
for view definition to get a minimal but sufficient solution
for the requested query.

7.4 Biases and threats to validity

In this section, we describe threats to validity of the case
study and limitations of the findings.

Internal validity The case study does not suffer from typ-
ical construct validity problems as is did not treat a pop-
ulation. Rather, the participants served as reference candi-
dates implementing a typical model integration problem. The
selection of the candidates was aligned with the expertise
they had in model-driven engineering. All four participants
are researchers with 2—4 years of experience in modeling,
model transformations, and view definitions. They all had
experience with the Palladio Component Model, none was
familiar with the Sensor Framework. The time to solve the
task was not limited. The non-random sampling of individ-
uals could lead to an overestimation of similarities, and thus
an underestimation of the variance, of the population.

External validity Since the participants are few and not rep-
resentative, it is unclear whether the study results can be
generalized to other situations. Reasons for that include the
fact that the population is very small and not representative.
The task, however, that we defined for the experiment, is typ-
ical for model-driven or model-based software engineering.
From the experience with earlier projects, we collected use
case scenarios that went into the definition of flexible views
and the development of ModelJoin.

8 Related work

Many of the problems that are encountered in view-based
modeling have counterparts in database research. Relational
databases offer the possibility to create views which may also
be editable. A relational view defines a schema of its own,
just like a view in MDSD has its own metamodel. The query

@ Springer

www.manaraa.com

492

E. Burger et al.

mechanism in relational databases serves the function of a
model-to-model transformation in MDSD. If data in the par-
tial view is manipulated, the view update problem [48,49]
arises, which is a central issue in relational databases which
is well understood, but mainly unsolved [50]. The process
of reintegrating changes on a partial view into the under-
lying database is called translation, and it has been shown
that such a translation does not always exist for any kind
of view update, and that it is undecidable whether a unique
translation exists. The problem can be alleviated by carefully
designing the views, so that every edit operation of a user in
a certain view can also be reverted in that same view with-
out losing information in the underlying database. In recent
research, the view-update problem has also been investigated
for tree-like structures [51], which can be applied to model
transformations using graph structures.

Integrating heterogeneous metamodels and instances
bears similarities to the well-known problem of schema
integration of heterogeneous databases [34,52]: A seman-
tic understanding of both domains is necessary to define the
mapping of elements; hence, it cannot be fully automated.
Furthermore, a global database schema is used to express
data from various sources. The equivalent technique in meta-
modeling terms is the creation of integrated view types for
heterogeneous metamodels, which also needs human inter-
action, and for which ModelJoin offers support through its
textual DSL.

ModelJoinis closely related to other approaches in the area
of multi-view modeling. For instance, Cicchetti et al. present
an approach for view creation from a base metamodel with
a hybrid of synthesis and projection attributes [53]. A view
metamodel is created from a base metamodel (with some
restrictions) and a number of transformations and tools are
generated to work with view-conformant models and syn-
chronize between the view and the base model. Restrictions
on the view creation cannot be avoided to be able to offer bidi-
rectional synchronization between instances. This approach
differs to ModelJoin primarily in the goal and the result-
ing restrictions; the hybrid approach creates a view from
a single-base metamodel with synchronization, while Mod-
elJoin joins two or more different metamodels for acombined
and read-only view. By forgoing reverse synchronization,
ModelJoin initially places fewer restrictions on the view cre-
ation, with other restrictions imposed by enabling joining.
The suitability of each approach depends on the application
case. In broad terms, ModelJoin can be seen as a first step
to investigating the reverse approach of the hybrid views of
Cicchetti et al., in that we derive a “base” metamodel from
two distinct views. The authors mention the possibility of
investigating the reversing of their approach in the future.

Extensive work has been done in the area of model-driven
software development on discovering relationships between
different models, synthesizing models based on other models,

@ Springer

and deriving information on models through querying, which
are central to ModelJoin.

In general, the join operator represents a model trans-
formation and is (as it is declarative) related to declara-
tive transformation languages like QVT Relations [12] and
ATL [13]. Yet in contrast, it is specifically tailored to eas-
ily and quickly define views on two similar metamodels.
This imposes restrictions (see Sect. 5.5) but in turn no prede-
fined target metamodel is required as is needed for general-
purpose transformation languages. The general-purpose lan-
guages should be used for cases too complex for ModelJoin;
here, ModelJoin can still serve as a good starting point.

Approaches for collaborative modeling make extensive
use of model synthesis. For example, model synthesis is used
in version control systems for models. The aim is to calcu-
late the difference between versions of models and to merge
models of different versions—both for MOF-based models
[54] and for EMF, like the diff and merge algorithms of EMF
Compare [55]. Another common task for model synthesis is
the handling of metamodel evolution. Here, models are syn-
thesized or “updated” to restore syntactic or semantic confor-
mance [36,56]. These approaches differ from ModelJoin in
that the treated models are related in a predefined manner, by
either stemming from the same base model or conforming
to different versions of the same metamodel. Furthermore,
ModelJoin only provides read-only views and the change
propagation back into a shared model for collaboration is
not supported.

The Epsilon Merging Language [57] supports the merging
of models from different metamodels. In contrast to Mod-
elJoin, it requires the target metamodel to be created manu-
ally before merging rules can be defined.

The VirtualEMF project [11] introduces virtual models
as a run-time solution for adapting one model or potentially
merging models from numerous sources. While the merged
models are created on the fly and on demand at run-time, in
contrast to ModelJoin, the merged metamodel and a weaving
model have to be defined beforehand and are not generated.
We see our approach to be complementary, as both artifacts
could be generated using our approach.

The EMF Facet project [7] provides a mechanism to
extend an existing metamodel and conforming models with
new elements, without changing the original artifacts. The
approach is thus related to both the synthesis of metamodels
and models. In contrast to ModelJoin, however, it does not
integrate two different metamodels.

The EMF- INCQUERY framework [10] tackles the prob-
lem of interconnecting heterogeneous models without setting
hard links between their metamodels. Instead, incremental
queries are executed to calculate derived features of EMF
models. The approach also features a caching mechanism
but is not non-intrusive, since the source metamodels have to
be modified by adding the derived features.

www.manaraa.com

Software development with ModelJoin

493

In the joining of models, the ModelJoin approach is related
to the field of model composition [14, 15] and aspect-oriented
modeling (AOM), which also include view-based model-
ing techniques [58]. Some approaches in model composi-
tion specialize on the joining of models of the same arbitrary
metamodel (like Kompose [16]), or a specific metamodel
(like the Glue Generator Tool (GGT) [17] for the UML).
ModelJoin differs in that two or more different metamodels
and conforming models are joined. The Atlas Model Weaver
(AMW) facilitates model composition through the creation
of weaving models, which describe different links between
models, and that of weaving metamodels, to define link types.
AMW has been used for a variety of applications, some of
which entail the generation of higher-order transformations
between linked models [59]. ModelJoin can be seen as a
very specific use case for model composition in the joining
aspect, yet it differs in that view-based approaches require a
view type, which is generated by ModelJoin in tandem.

The synthesis of the view metamodel is one important step
of ModelJoin, and we recognize that many other approaches
use metamodel synthesis either directly or as part of a
method. Specifically, Kiihne et al. [60] generate a metamodel
for the pattern specification part of model transformations to
be able to offer better support for the creation of transfor-
mation rules. They further propose the use of three distinct
steps (relaxation, augmentation, and modification) to derive
at atailored pattern-metamodel from a generic metamodel for
the input or output languages. We took a different route in our
approach as our purpose is different; to arrive at a metamodel
of a joint view, we need to provide the means for the user to
specify which parts of two distinct metamodels are meant to
join as opposed to tailoring a single metamodel. While the
task of creating views over models can be tackled by a large
number of approaches (like general-purpose transformation
languages), we believe that ModelJoin is beneficial in pro-
viding a single DSL and deriving everything necessary from
1t.

Other approaches for the management of heterogeneous
models use a central, fixed metamodel as a hub; bidirectional
transformations have to be specified for all metamodels that
are to be supported: The OSM approach [5] has been imple-
mented in KobrA [26]. More tool-driven approaches include
ModelBus [61], which is focused on the interoperability of
heterogeneous modeling tools, and DuALLy [62], which uses
higher-order transformations based on ATL for architectural
description languages.

9 Conclusion and future work
The method for the definition of custom views presented

in this paper offers an intuitive way and reduces the effort
to create views on heterogeneous models. With the Mod-

elJoin DSL, developers in model-driven software develop-
ment projects can define recurring or singular information
needs using a textual syntax. ModelJoin implements the con-
cept of flexible views, which combine view type and view
definition to provide means for a rapid creation of custom,
user-specific views. The metamodel which defines the view
type, the instances which represent the view, and the trans-
formations between the source models and the view type are
generated from a ModelJoin query, and also coevolve if the
query is modified. Developers do not have to specify the view
types and transformations manually and do not have to main-
tain the conformance between the M2M transformations and
the metamodels in case of a change to the flexible view.

With ModelJoin and the view-based development approach,
developers of model-driven software projects gain permanent
access to consistent, up-to-date and complete information
about the system under development, tailored to the infor-
mation needs of different developer roles, such as domain
experts, system architects, or software developers. Views that
are defined with ModelJoin can be customized to the needs
of an individual developer and can be defined by the develop-
ers in textual form using the ModelJoin DSL. We expect that
ModelJoin speeds up the development process since manual
efforts like the creation of metamodels and transformations
are avoided. The evaluation of ModelJoin indicates that def-
inition of flexible views with ModelJoin is more compact
than the implementation with other, state-of-the-art model-
ing technologies.

ModelJoin supports view-centric software development
processes like OSM [5] or VITRUVIUS [27], which heav-
ily rely on the possibility to create and modify varying
view types and views. The ability of ModelJoin to create
views on heterogeneous models without the need of chang-
ing the involved metamodels forms the basis for non-intrusive
approaches, which combine legacy metamodels to form a
modular single underlying model.

To fully support view-centric development processes, a
flexible view should also be configurable to be editable. The
view type definition has to include rules for the manipulation
of elements and the transformation back to the underlying
models. We plan to extend the ModelJoin DSL by constructs
that describe the editability of view types and the policies for
the synchronization with the source metamodels. In a view-
centric development process, the source models can only be
manipulated through views and require bidirectional trans-
formations to keep the views synchronized with the models.

The implementation prototype presented in this paper is
based on the EMF technologies QVT, Xtext, and Xtend2.
Future implementations of ModelJoin could be performed,
e.g., via an object/relational mapping using the Eclipse CDO
[63] model persistency framework, which is expected to per-
form better on very large models, or using a graph-oriented
representation of the models with a graph query language,

@ Springer

www.manaraa.com

494

E. Burger et al.

e.g., the Cypher Query Language [64], which supports trans-
actionality and editability.

Our first experiences with performance properties of the
ModelJoin prototype indicate that the execution time of
the ModelJoin algorithms (transformation and metamodel
generation) scales linearily with the size of the query. The
size of the input metamodels and models only influence
the loading times of the EMF framework and the execu-
tion time of the QVT-O transformations. This is, however,
not a ModelJoin-specific performance issue, but concerns all
EMF-based applications and is the subject of other research
in model-driven development [65]. As future work, we plan a
performance evaluation of ModelJoin using a test framework
that creates synthetic metamodels, instances, and matching
queries, which is currently under development. To systemat-
ically explore the degrees of freedom in the input data, we
are planning to conduct tests using the Software Performance
Cockpit [66].

The flexible views that are created with ModelJoin can
already be persisted and reused on varying instances of the
input metamodels. It could also be helpful to reuse the view
type of such a flexible view for new ModelJoin queries, so
that the resulting views are instances of the same view type.
Currently, a state-based conformance check [42] can be used
to determine if an existing metamodel is an apt metamodel
for a specific query. Future versions of the implementation
could assist the developer in adapting a query so that the
result conforms to this existing metamodel.

To increase the meaningfulness of our case study, we plan
to re-evaluate the tool with a larger sample of developers.

References

1. France, R., Rumpe, B.: Does model driven engineering tame com-
plexity? English. Softw. Syst. Model. 6.1, 1-2 (2007). ISSN: 1619-
1366. doi:10.1007/s10270-006-0041-9

2. Bendix, L., Emanuelsson, P.: Requirements for practical model
merge—an industrial perspective. In: Schiirr, A., Selic, B. (eds.)
Model Driven Engineering Languages and Systems, vol. 5795.
LNCS, pp. 167-180. Springer, Berlin (2009). ISBN: 978-3-642-
04424-3. doi:10.1007/978-3-642-04425-0_13

3. Yang, Y., et al.: Phase distribution of software development effort.
In: Proceedings of the Second ACMIEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM ’08),
pp- 61-69. ACM, Kaiserslautern, Germany (2008). ISBN: 978- 1-
59593-971-5. doi:10.1145/1414004.1414016

4. Goldschmidt, T., Becker, S., Burger, E.: View-based modelling—a
tool oriented analysis. In: Proceedings of the Modellierung 2012,
Bamberg (2012)

5. Atkinson, C., Stoll, D., Bostan, P.: Orthographic software mod-
eling: a practical approach to view-based development. In: Maci-
aszek, L.A., Gonzalez-Pérez, C., Jablonski, S. (Eds.) Evaluation of
Novel Approaches to Software Engineering, vol. 69, Communica-
tions in Computer and Information Science, pp. 206-219. Springer,
Berlin (2010). ISBN: 978-3-642-14819-4

@ Springer

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

. Burger, E.: Flexible views for view-based model-driven develop-

ment. In: Proceedings of the 18th International Doctoral Sympo-
sium on Components and Architecture (WCOP ’13), pp. 25-30.
ACM, Vancouver, BC, Canada (2013). ISBN: 978-1-4503-2125-9.
doi:10.1145/2465498.2465501

. EMF Facet. http://www.eclipse.org/facet/
. EMF Model

Query. http://www.eclipse.org/modeling/emf/?
project=query

- EMF Query 2. http://wiki.eclipse.org/EMF_Query2Home
. Hegediis, A., et al.: Query-driven soft interconnection of EMF

models. In: France, R., et al. (eds.) Model Driven Engineering
Languages and Systems, Vol. 7590. Lecture Notes in Computer
Science, pp. 134-150. Springer, Berlin (2012). ISBN: 978-3-642-
33665-2. doi:10.1007/978-3-642-33666-9_10

Clasen, C., Jouault, F., Cabot, J.: VirtualEMF: a model virtualiza-
tion tool. In: De Troyer, O., et al. (eds.) Advances in Conceptual
Modeling. Recent Developments and New Directions, vol. 6999.
LNCS, pp. 332-335. Springer, Berlin (2011). ISBN: 978-3-642-
24573-2. doi:10.1007/978-3-642-24574-9_43

Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. Object Management Group (2011). http://www.omg.org/
spec/QVT/1.1/

Jouault, F., Kurtev, I.: Transforming models with ATL. In:
Satellite Events at the MoDELS 2005 Conference, pp. 128-
138. Springer, Berlin (2006). http://www.springerlink.com/index/
7143g735r4j59463.pdf

Herrmann, C., et al.: An algebraic view on the semantics
of model composition. In: Akehurst, D., Vogel, R., Paige, R.
(eds.) Model Driven Architecture-Foundations and Applications,
Vol. 4530. Lecture Notes in Computer Science, pp. 99-113.
Springer, Berlin (2007). ISBN: 978-3-540-72900-6. doi:10.1007/
978-3-540-72901-3_8

Bézivin, J., et al.: A canonical scheme for model composition.
In: Rensink, A., Warmer, J. (eds.) Model Driven Architecture-
Foundations and Applications, Vol. 4066. LNCS, pp. 346-360.
Springer, Berlin (2006). ISBN: 978-3-540-35909-8. doi:10.1007/
11787044_26

Fleurey, E., et al.: A generic approach for automatic model com-
position. In: Giese, H. (ed.) Models in Software Engineering, vol.
5002. LNCS, pp. 7-15. Springer, Berlin (2008). ISBN: 978-3-540-
69069-6. doi:10.1007/978-3-540-69073-3_2

Atlas Model Weaver. http://www.eclipse.org/gmt/amw/
Bouzitouna, S., Gervais, M.-P., Blanc, X.: Model reuse in MDA.
In: Proceedings of the International Conference on Software Engi-
neering Research and Practice (SERP’05). Las Vegas, USA (2005)
Becker, S., Koziolek, H., Reussner, R.: The Palladio Component
Model for model-driven performance prediction. J. Syst. Softw. 82,
3-22(2009). doi:10.1016/j.jss.2008.03.066

Finkelstein, A., et al.: Viewpoints: a framework for integrating mul-
tiple perspectives in system development. Int. J. Softw. Eng. Knowl.
Eng. 2(1), 31-57 (1992)

Rumbaugh, J., et al.: Object-Oriented Modeling and Design. 1.
Prentice Hall, Englewood Cliffs (1991).

Coleman, D., et al.: Object-Oriented Development: The Fusion
Method. Prentice Hall, Englewood Cliffs (1994)

Kruchten, P.B.: The 4+1 view model of architecture. In: Soft-
ware IEEE 12.6, 42-50 (1995). ISSN: 0740-7459. doi:10.1109/
52.469759

Kruchten, P.: The Rational Unified Process: An Introduction, 3rd
ed., 6. pr. Addison-Wesley Object Technology Series. Addison-
Wesley, Upper Saddle River (2007). ISBN: 0-321-19770-4

OMG Unified Modeling Language (UML). Object Management
Group (2011). http://www.omg.org/spec/UML/2.4.1/

Atkinson, C., et al.: Modeling components and component-based
systems in KobrA. In: Rausch, A., et al. (eds.) The Common
Component Modeling Example, vol. 5153. Lecture Notes in Com-

www.manaraa.com

http://dx.doi.org/10.1007/s10270-006-0041-9
http://dx.doi.org/10.1007/978-3-642-04425-0_13
http://dx.doi.org/10.1145/1414004.1414016
http://dx.doi.org/10.1145/2465498.2465501
http://www.eclipse.org/facet/
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emf/?project=query
http://wiki.eclipse.org/EMF_Query2Home
http://dx.doi.org/10.1007/978-3-642-33666-9_10
http://dx.doi.org/10.1007/978-3-642-24574-9_43
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.springerlink.com/index/7143g735r4j59463.pdf
http://www.springerlink.com/index/7143g735r4j59463.pdf
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/10.1007/978-3-540-69073-3_2
http://www.eclipse.org/gmt/amw/
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://www.omg.org/spec/UML/2.4.1/

Software development with ModelJoin

495

217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.
40.
41.

42.

43.

44,

45.

puter Science, pp. 54-84. Springer, Berlin (2008). doi:10.1007/
978-3-540-85289-6_4

Kramer, M.E., Burger, E., Langhammer, M.: View-centric engi-
neering with synchronized heterogeneous models. In: Proceedings
of the 1st Workshop on View-Based, Aspect-Oriented and Ortho-
graphic Software Modelling (VAO *13), pp. 5:1-5:6. ACM, Mont-
pellier, France (2013). ISBN: 978-1-4503-2070-2. doi:10.1145/
2489861.2489864

ISO/IEC Standard for Systems and Software Engineering-
Recommended Practice for Architectural Description of Software-
Intensive Systems. In: ISO/IEC 42010 IEEE Std 1471-2000
First edition 2007-07-15 (July 2007), pp. c1-c24. doi:10.1109/
IEEESTD.2007.386501

ISO/IEC/IEEE Std 42010:2011: Systems and Software
Engineering-Architecture Description. IEEE, Los Alamitos
(2011)

Stahl, T., Volte, M.: Model-Driven Software Development. Wiley,
New York (2006)

OMG Model Driven Architecture. http://www.omg.org/mda/
Eclipse Modeling Framework. Version 2.7. http://www.eclipse.
org/modeling/emf/

Goldschmidt, T., Becker, S., Uhl, A.: Incremental updates for tex-
tual modeling of large scale models. In: Proceedings of the 15th
IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2010)—Poster Paper. IEEE (2010)
Reddy, M., et al.: A methodology for integration of heterogeneous
databases. IEEE Trans. Knowl. Data Eng. 6.6, 920-933 (1994).
ISSN: 1041-4347. doi:10.1109/69.334882

Burger, E., Gruschko, B.: A change metamodel for the evolu-
tion of MOF-based metamodels. In: Engels, G., Karagiannis, D.,
Mayr, H.C. (eds.) Proceedings of Modellierung 2010, vol. P-
161. GI-LNIL. Klagenfurt, Austria (2010). http://sdqweb.ipd.kit.
edu/publications/pdfs/burger2010a.pdf

Herrmannsdorfer, M., Vermolen, S.D., Wachsmuth, G.: An exten-
sive catalog of operators for the coupled evolution of metamodels
and models. In: Proceedings of the Third International Conference
on Software Language Engineering (SLE’10), pp. 163-182.
Springer, Berlin (2011). ISBN: 978-3-642-19439-9. http://www4.
in.tum.de/herrmama/publications/SLE2010_herrmannsdoerfer_
catalog_coupled_operators.pdf

Happe, L., et al.: Completion and extension techniques for enter-
prise software performance engineering. In: Brunetti, G., et al.
(eds.) Future Business Software-Current Trends in Business Soft-
ware Development. Progress in IS. Springer, New York (2014).
ISBN 978-3-319-04143-8. doi:10.1007/978-3-319-04144-5
Reussner, R., et al.: The Palladio Component Model. Tech. rep.
Karlsruhe: KIT, Fakultit fiir Informatik (2011). http://digbib.ubka.
uni-karlsruhe.de/volltexte/ 1000022503

Atlas Transformation Language. http://www.eclipse.org/atl/
OMG Object Constraint Language (OCL): Object Management
Group (2012). http://www.omg.org/spec/OCL/2.3.1/

Meta Object Facility (MOF) Core: Object Management Group
(2011). http://www.omg.org/spec/MOF/2.4.1/

Burger, E., Toshovski, A.: Differencebased conformance checking
for ecore metamodels. In: Proceedings of Modellierung 2014, Vol.
225. GI-LNIL. Vienna, Austria (2014). http://sdqweb.ipd.kit.edu/
publications/pdfs/burger2014a.pdf

Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Con-
cepts: Effective Communication of IT Systems. Wiley, New York
(2006). ISBN 978-0-470-02710-3

The Modeling Workflow Engine 2 (MWE2). http://www.eclipse.
org/Xtext/documentation/2_0_0/118-mwe-in-depth.php

Burger, E., et al.: ModelJoin. A Textual Domain-Specific Language
for the Combination of Heterogeneous Models. Tech. rep. 1. Karl-
sruhe Institute of Technology, Faculty of Informatics (2014). http://
digbib.ubka.uni-karlsruhe.de/volltexte/ 1000037908

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Johnson, R., et al.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995). ISBN:
9780201633610

Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to Proba-
bility and Statistics, 12th edn. Cengage Learning, Stamford (2005).
ISBN 9780534418700

Bancilhon, F., Spyratos, N.: Update semantics of relational views.
ACM Trans. Database Syst. 6.4, 557-575 (1981). ISSN: 0362-
5915. doi:10.1145/319628.319634

Codd, E.F.: The Relational Model for Database Management: Ver-
sion 2. Addison-Wesley/Longman, Boston (1990). ISBN 0-201-
14192-2

Lechtenborger, J.: The impact of the constant complement
approach towards view updating. In: Proceedings of the Twenty-
Second ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems (PODS *03), pp. 49-55. ACM, New York,
NY, USA (2003). ISBN: 1-58113-670-6. doi:10.1145/773153.
773159

Nathan Foster, J., et al.: Combinators for bi-directional tree trans-
formations: a linguistic approach to the view update problem. SIG-
PLAN Not. 40.1, 233-246 (2005). ISSN: 0362-1340. doi:10.1145/
1047659.1040325

Sheth, A.P., Larson, J.A.: Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM
Comput. Surv. 22(3), 183-236 (1990). ISSN: 0360-0300. doi:10.
1145/96602.96604

Cicchetti, A., Ciccozzi, F., Leveque, T.: A hybrid approach
for multi-view modeling. In: Electronic Communications of
the EASST Recent Advances in Multi-paradigm Modeling
(MPM2011), vol. 50 (2011). ISSN: 1863-2122. http://journal.ub.
tu-berlin.de/eceasst/article/view/738

Alanen, M., Porres, I.: Difference and union of models. In: Stevens,
P., Whittle, J., Booch, G. (Eds.) Proceedings of the “UML 2003”—
The Unified Modeling Language, Modeling Languages and Appli-
cations 6th International Conference, San Francisco, CA, USA
(October 20-24, 2003), Vol. 2863. LNCS, pp. 2-17. Springer,
Berlin/Heidelberg (2003). ISBN: 978-3-540-20243-1

Brun, C., Pierantonio, A.: Model differences in the eclipse mod-
elling framework. In: UPGRADE the European J for the Infor-
matics Professional IX.2, pp. 29-34 (2008). http://www.cepis.org/
upgrade/files/2008- II-pierantonio.pdf

Cicchetti, A., et al.: Automating co-evolution in model-driven
engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, pp. 222-231. IEEE (2008). doi: 10.
1109/EDOC.2008.44. http://www.computer.org/portal/web/csdl/
doi/10.1109/EDOC.2008.44

Kolovos, D., Paige, R., Polack, F.: Merging models with the epsilon
merging language (EML). In: Nierstrasz, O., et al. (Eds.) Model
Driven Engineering Languages and Systems, Vol. 4199. Lecture
Notes in Computer Science, pp. 215-229. Springer, Berlin (2006).
ISBN: 978-3-540-45772-5. doi:10.1007/11880240_16

Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view
modeling. In: Proceedings of the 8th ACM International Con-
ference on Aspect-Oriented Software Development (AOSD ’09),
pp- 87-98. ACM, Charlottesville, VA, USA (2009). ISBN: 978-1-
60558-442-3. doi:10.1145/1509239.1509252

Didonet Del Fabro, M., Valduriez, P.: Towards the efficient develop-
ment of model transformations using model weaving and match-
ing transformations. Softw. Syst. Model. 8(3), 305-324 (2008).
ISSN: 1619-1366. doi:10.1007/s10270-008-0094-z. http://www.
springerlink.com/index/10/s10270-008-0094-z

Kiihne, T., et al.: Explicit transformation modeling. In: Proceed-
ings of the 2009 International Conference on Models in Soft-
ware Engineering (MODELS’ 09), pp. 240-255. Springer, Den-
ver, CO (2010). ISBN: 3-642-12260-4-642-12260-6. doi:10.1007/
978-3-642-12261-3_23

@ Springer

www.manaraa.com

http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1145/2489861.2489864
http://dx.doi.org/10.1145/2489861.2489864
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://www.omg.org/mda/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1109/69.334882
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://www4.in.tum.de/herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://www4.in.tum.de/herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://www4.in.tum.de/herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://dx.doi.org/10.1007/978-3-319-04144-5
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://www.eclipse.org/atl/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/MOF/2.4.1/
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://www.eclipse.org/Xtext/documentation/2_0_0/118-mwe-in-depth.php
http://www.eclipse.org/Xtext/documentation/2_0_0/118-mwe-in-depth.php
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1145/773153.773159
http://dx.doi.org/10.1145/773153.773159
http://dx.doi.org/10.1145/1047659.1040325
http://dx.doi.org/10.1145/1047659.1040325
http://dx.doi.org/10.1145/96602.96604
http://dx.doi.org/10.1145/96602.96604
http://journal.ub.tu-berlin.de/eceasst/article/view/738
http://journal.ub.tu-berlin.de/eceasst/article/view/738
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1109/EDOC.2008.44
http://www.computer.org/portal/web/csdl/doi/10.1109/EDOC.2008.44
http://www.computer.org/portal/web/csdl/doi/10.1109/EDOC.2008.44
http://dx.doi.org/10.1007/11880240_16
http://dx.doi.org/10.1145/1509239.1509252
http://dx.doi.org/10.1007/s10270-008-0094-z
http://www.springerlink.com/index/10/s10270-008-0094-z
http://www.springerlink.com/index/10/s10270-008-0094-z
http://dx.doi.org/10.1007/978-3-642-12261-3_23
http://dx.doi.org/10.1007/978-3-642-12261-3_23

496

E. Burger et al.

61.

62.

63.

64.

65.

66.

Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with
ModelBus. In: Workshop Future Trends of Model-Driven Devel-
opment (2009)

Malavolta, I., et al.: Providing Architectural Languages and Tools
Interoperability Through Model Transformation Technologies.
Tech. rep. 1, pp. 119-140 (2010). doi:10.1109/TSE.2009.51
Eclipse Connected Data Objects (CDO). http://wiki.eclipse.org/
CDO

Cypher Query Language. http://docs.neo4j.org/chunked/stable/
cypher-query-lang.html

Amstel, M., et al.: Performance in model transformations: exper-
iments with ATL and QVT. In: Cabot, J., Visser, E. (Eds.)
Theory and Practice of Model Transformations, Vol. 6707.
Lecture Notes in Computer Science, pp. 198-212. Springer,
Berlin, Heidelberg (2011). ISBN: 978-3-642-21731-9. doi:10.
1007/978-3-642-21732-6_14

Westermann, D., et al.: Automated inference of goal-oriented
performance prediction functions. In: Proceedings of the 27th
IEEE/ACM International Conference On Automated Software
Engineering (ASE 2012). Essen, Germany (2012)

Erik Burger studied Com-
puter Science at the University of
Karlsruhe. After completing his
diploma thesis at SAP, Walldorf,
he joined the Software Design
and Quality (SDQ) group at Karl-
sruhe Institute of Technology
in 2009, where he is currently
(2014) completing his PhD the-
sis. His main research inter-
ests cover model-driven software
development, metamodel evolu-
tion, and view-based modeling.
He is currently involved in the
development of the view-centric

Vitruvius approach, which is based on a virtual single underlying model
and the automatic generation of view types and views.

Jorg Henss studied Computer
Science at the University of
Karlsruhe. After completing his
diploma thesis at Fraunhofer,
Karlsruhe, he worked as a free-
lance software developer and
joined the Software Design and
Quality (SDQ) group at Karl-
sruhe Institute of Technology
in 2009, where he is currently
(2014) completing his PhD the-
sis. His main research interests
cover simulation interoperability
and model-driven engineering.

@ Springer

Martin Kiister is aresearcher at
the Software Engineering group
of FZI Research Center for Infor-
mation Technology. Since 2010,
he has been working with models
extensively. Early work included
textual syntaxes for models and
models for performance predic-
tion of real-time embedded soft-
ware. More recently, he designed
domain-specific languages for
the model-driven development of
mobile applications. The usage
of models for validation and
traceability of design decisions

with linkage to architectural models and code is his current research
focus, in which he is pursuing his Ph.D.

Steffen Kruse is a researcher
at the Architecture Engineering
and Interoperability group at the
OFFIS—Institute for Informa-
tion Technology in Oldenburg,
Germany. After receiving his
Diploma in Computer Science
from the University of Olden-
burg, he joined OFFIS in 2008
where he is currently complet-
ing his PhD thesis. His research
interests include the evolution of
models and model transforma-
tions and the practical visualisa-
tion of structured information.

Lucia Happe is a researcher at
the Karlsruhe Institute of Tech-
nology (KIT) in the group of
Software Design and Quality
(SDQ). She received her Ph.D. in
computer science in 2011 from
the KIT as well. In 2008, she
was awarded a Ph.D. scholarship
from the Deutscher Akademis-
cher Austauschdienst (DAAD).
She got her diploma in computer
science from the Technical Uni-
versity of Kosice in Slovakia.
The usage of model-driven tech-
niques in complex systems engi-

neering, quality properties of software artifacts in model-driven devel-
opment and model-based quality prediction, with focus on model-driven
security, is her current research focus.

www.manaraa.com

http://dx.doi.org/10.1109/TSE.2009.51
http://wiki.eclipse.org/CDO
http://wiki.eclipse.org/CDO
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://dx.doi.org/10.1007/978-3-642-21732-6_14
http://dx.doi.org/10.1007/978-3-642-21732-6_14

Software & Systems Modeling is a copyright of Springer, 2016. All Rights Reserved.

www.manharaa.com

	View-based model-driven software development with ModelJoin
	Abstract
	1 Introduction
	2 Foundations
	2.1 View-based model-driven software development
	2.2 Query languages

	3 Flexible view types for model-driven development
	3.1 Motivation
	3.2 Flexible view types
	3.3 ModelJoin: a language for flexible view type definitions

	4 Motivating example
	4.1 Software architecture model
	4.2 Performance data model
	4.3 Usage scenarios

	5 The ModelJoin language
	5.1 Language design
	5.2 Set notation of metamodels
	5.2.1 Set notation of Ecore
	5.2.2 Type system

	5.3 Abstract syntax
	5.3.1 Join expressions
	5.3.2 Keep expressions
	5.3.3 Select
	5.3.4 Rename

	5.4 Conformity between metamodels
	5.5 Assumptions/limitations

	6 Technical aspects
	6.1 Concrete textual syntax
	6.2 Metamodel synthesis
	6.3 Annotated target metamodel
	6.4 Transformation generation
	6.5 Transformation execution
	6.6 Reuse of target metamodels

	7 Case study
	7.1 Example
	7.2 Empirical study
	7.3 Evaluation
	7.4 Biases and threats to validity

	8 Related work
	9 Conclusion and future work
	References

